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Abstract: Automated telescope scheduling systems have traditionally focused on optimizing the use of the 

observatory, minimizing overhead and maximizing shutter-open time. However, most observatories do not enjoy 
consistently good skies. Conditions can change significantly during an observing session, leading to schedule breakage. 
In addition, science observing may require prompt follow-up observations that arise during a night’s observing. These 
issues give rise to the need for a scheduling system that is capable of recovering from periods of bad skies, wind, etc. , 
and of integrating newly added observations during operation, all without operator intervention. The concept of “just-
in-time” or dispatch scheduling, where the scheduler dynamically makes a “best” choice for the next observation, will 
be discussed. A dispatch scheduler was constructed, tested initially (as described in the previous versions of this paper), 

deployed and supported as a commercial product then revised per user feedback and ongoing research. This experience 
exposed two weaknesses in the design. Solutions  have been found and validated. One solution also improved the 
overall efficiency of the scheduler. This paper will describe the revised scheduler, the specific weaknesses encountered, 
and the solutions to this weakness, Rising Plan Delay and an additional efficiency function coefficient Project 
Completion. 

 

Revised (5): September 2018 
© 2004-2018, Robert B. Denny, Mesa, AZ. 

 

 

 

1 Introduction 

The process of acquiring data for both astronomical science 

and artistic astroimaging involves planning, scheduling, and 

observing. These three phases of data acquisition may be 

viewed as what, when, and how, respectively. Managing 
acquired data (where) is a separate topic that will not be 

addressed in this paper. When designing tools for data 

acquisition, it is important to keep the three considered 

activities clearly separated.  

1. Planning establishes what data is needed for the 

mission, and may place constraints that affect 

acquisition timing in order to assure that the data meets 

the minimum quality needed to support the mission. 

Typically, planning is done by the investigator or 

astronomer. 

2. Scheduling makes the decision as to when requested 

data can and should be acquired, in order to meet the 
constraints. This is the role of a scheduler. 

3. Observing involves the control of the observatory 

instruments and software to capture a package of data 

(which may be multiple images at multiple 

wavelengths, for example). The use of a scheduler 

implies that a sequencer is used to automate the data 

acquisition process when directed by the scheduler. 

This paper, and the engineering work it describes, focuses 

only on scheduling. The implications of this may not be 

immediately obvious. Suppose a request is submitted for an 

observation with coordinates and constraints that make it 
impossible to observe at any time during the year regardless 

of weather. It is not the scheduler’s job to alert the user that 

he has entered an impossible request. It simply will never 

schedule the impossible request. It is the job of the 

astronomer (and any planning tool) to create an observing 

plan that is practical as well as supportive of the mission. 

One can envision multiple specialized planning tools that 

feed their requests into the scheduler through a common 

protocol. As stated, these tools are not a topic of this paper. 

2 Background 

During the initial phase of this project, it was found that 

virtually all of the research on scheduling of resources had 

optimal resource utilization as the goal. This typically 

involves a complex time-consuming process, and applied to 

astronomical observing, produces a static schedule for an 

entire night’s observing. The success of such an optimized 

static schedule depends on (a) problem-free execution of 

each observation, (b) perfect knowledge of the time duration 
needed for each observation, and (c) perfect fore-knowledge 

of the weather throughout the night.  

Once an observation fails, any linked observations also 
must fail, leaving holes in the schedule. If the telescope 

needs an un-forecast refocusing, the schedule is broken, 

requiring observations (and possibly linked observations) to 

be skipped. If the sky conditions or weather changes, it can 

eliminate an entire class of observations from consideration 

due to their constraints being violated. For example, a thin 

cirrus layer could preclude all-sky photometry, but there 

could be other as-yet unscheduled observations that could 

be made without deleterious effect. 



These considerations led to the desire to make the 
scheduler dynamic in some way, able to adapt to changing 

conditions, new requests, and acquisition errors, while still 

maintaining reasonable efficiency. Further research in this 

direction produced the Steele and Carter paper (ref. 1). The 

concepts discussed in their paper provided basic concepts 
for the design of the present scheduler. However, very little 

detail is contained in Steele and Carter, and the difficult 

problem of handling linked observations is not treated at all. 

The basic concepts presented in their paper will be briefly 

described in the following sections. No claim of originality 

is made for these concepts. 

2.1 Scheduler Design 

Steele and Carter identify the following three criteria for a 

“good schedule”: (a) fairness, (b) efficiency, and (c) 

sensibility. A fair schedule balances time allocations 

between users such that they all share good and bad 

observing times equitably. An efficient schedule is one that 
maximizes instrument utilization and strives to match 

observations with required conditions. A sensible schedule 

is one that attempts only those observations that are possible 

under the current observing conditions.  

The ACP Scheduler (ACPS) is a practical adaptation 
of Steele and Carter’s concepts combined with additional 

features and practicalities needed to turn their basic ideas 

into a commercial-class scheduling engine. It is designed to 

handle observation requests from multiple users. Requests 

are kept in a permanent relational database store. The 

requests can be entered months ahead of the time at which 

constraints will first be met, or minutes before they are 

needed.  

Throughout this paper, many of the fine-grained details 
and features of the scheduler are omitted for clarity. They 

don’t affect the basic conceptual knowledge gained from 

user experiences and simulations. 

Table 1. Scheduler Data Hierarchy 

User Top-level node. Represents a user or using 
organization, not necessarily an observer or 
investigator 

Project Child of User. Represents a scientific 
project that may require multiple sets of 
data 

Plan Child of Project. This is the basic 

schedulable unit. It represents one or more 
observations that must be performed as a 
group and within a single night. 

Observation Child of plan. Represents a single target 
beginning at a single time. This is the 

basic unit of work for the observatory. 
Constraints are applied to observations. 
Linked observations are entered as separate 
observations with the same parent plan, 

with specified time separations. 

ImageSet Child of Observation. Represents one or 
more images to be acquired back-to-back 
and at a single wavelength. 

In order to understand the descriptions of scheduler 
behavior in later sections, it is necessary to define some 

terminology. The scheduler request database is hierarchical 

and consists of the following node types, as shown in Table 

1 above. 

The simplest plan is one with a single observation and a 
single image-set that specifies a single image. Plans with 

more than one observation form linked observations with a 

specified time interval between them. 

Each observation carries with it a set of constraints that 
limit the times at which the observation can be taken. 

Example constraints include altitude, air mass, seeing, moon 

phase/elongation, and sky condition. The scheduler supports 

an open-ended set of constraints through a plug-in facility. 
For this paper, only a basic “above the horizon” altitude 

constraint was used in simulations. A more complex set of 

constraints would serve only to make it more difficult to 

interpret results.  

Priorities are supported, and are applied to plans. Rather 
than impose a fixed priority range on everyone, each User is 

allowed to assign any range of priority values to their plans. 

During the scheduling cycle, (see below) priorities are 

normalized in a way that maximizes fairness between Users. 

2.2 System Architecture 

Figure 1 is a software block diagram of a robotic 

observatory controlled by the scheduler and a sequencer, 

augmented by user tools for browsing the request database 

and for planning observing requests.   

The sequencer is responsible for automatically 
manipulating all of the observatory instruments and 

equipment needed to acquire the data for each observation 

(the basic unit of work for the observatory). The scheduler 

was designed with a standard sequencer interface, allowing 
it to potentially be used with a variety of robotic observatory 

control systems. Two sequencers have been developed at 



this point: (1) a simulator sequencer for research and testing, 

and (2) a commercial observatory control system1. 
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Figure 1. Software Block Diagram 

The scheduler consists of a dispatcher and a set of 

constraint plug-ins. As described elsewhere, constraints can 

be separately developed, allowing for addition of custom 

constraints for special applications. The dispatcher is 

responsible for selecting plans to start, and for dispatching 

observations to the active sequencer. 

The centerpiece of the system is a relational database 
which contains all of the observing requests and the current 

states of each. All of the components of the system 

communicate through the database via an operating system 

vendor supplied database engine plus a wrapper object that 

isolates the system components from low level database 

operations and Structured Query Language (SQL) 
statements. Thus, the database looks like a special purpose 

black box with all storage and retrieval details hidden from 

the system components. 

3 Scheduler Operation - Overview 

Fundamentally, ACPS is a dispatch scheduler. At each 

scheduling cycle, it decides which of the eligible plans to 

start next. Once started, a plan must run to completion or 
fail completely. If a plan fails, it is re-queued and will be 

attempted again later. It is possible (via a user control) to 

give preference to failed (and thus re-queued) plans with 

respect to those that have never been started.  

When an observation is completed, the scheduler looks 
to see if one or more new plans can be started (based on 

constraints) before an already-running plan’s next linked 

observation comes up for acquisition. At a minimum, the 

first observation of a candidate new plan must fit into the 

time remaining before any already-scheduled observation 

(belonging to any already-started plan). If a candidate new 

plan has multiple linked observations, all of them are 
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 ACP Observatory Control Software, developed by the author. 

checked against all of the linked observations in already-

started plans. If there are any clashes, the candidate plan 

will not be considered. There is no requirement that linked 

observations be spaced at regular intervals. 

3.1 Efficiency Function 

After all eligible plans are checked for constraints and 
timing clashes with running plans, the remaining eligible 

plans form the set from which the scheduler picks the “best” 

plan to start in this cycle. As described in detail below, this 

is done by applying an efficiency function to each plan. The 

plan with the highest efficiency index will be started. Of 

course, if only one plan remains after the preceding tests, it 

will be started without qualification.  

3.2 Concurrent plan Execution 

It is important to understand that multiple plans may be 

active at any point in time. This will happen if any plan with 

more than one linked observation is active. As we will see, 

one of the scheduler’s important tasks is to avoid starting a 
new plan if any of its observations would clash in time with 

any of the linked observations of running plans. 

Any point in time, the remainder of the night may 
already have time slots reserved for doing linked 

observations of running plans. These time slots are in 

general irregularly spaced in time and occupy irregular 

intervals of time as well. Thus, multiple plans may be 

concurrently active, and this is an important feature of the 

scheduler if it is to achieve its goal of efficiency. 

4 Scheduling Cycle 

The scheduler runs a continuous loop consisting of the 

following steps (simplified for clarity): 

1. Calculate estimated time spans of any newly added 

plans 

2. Normalize priorities. 

3. Start any plans which have specified an absolute start 

date/time, and for which that date/time has arrived. If 

such a plan is started, send its first observation to the 

Sequencer. Jump to (10). 

4. Look to see if any already-started plans have an 

observation that is due now. If so, send that observation 

to the sequencer. Jump to (10). 
5. Change unstarted plans that were previously vetoed and 

deferred by constraints, and for which the deferral time 

has expired, back to a status of pending (eligible to be 

started now). 

6. Change unstarted plans that were previously vetoed due 

to a time clash back to a status of pending. 

7. At this point, only eligible pending plans are left to 

consider. For each of them: 

A. Check to see if the entire plan can be completed 

before sunrise if it were to be started now. If not, 



defer the plan, removing it from consideration until 

the next night. 

B. Check each observation of the plan (if more than 

one observation, the second and subsequent will 

specify a time from the previous observation), 

using the current time as a baseline, as follows: 

1. Apply observer-specified constraints at the 

(estimated) time. If constraints cannot be met, 

veto the plan and move on to the next 

candidate. 

2. Test to see that the observation does not clash 

with any observation belonging to an already-

started plan. If a clash is detected, veto the 

plan and move on to the next. 

C. For a rising plan, check to see if it can safely be 

allowed to continue to rise even though it would 

now be eligible. If so, defer it for a bit of time. 

8. If there are any eligible (unstarted) plans left at this 
point, pick the “best” one to start. This is the critical 

operation, the one that determines the behavior of the 

scheduler. We will expand on this below. 

9. Send the first observation of the selected plan to 

sequencer for data acquisition. 

10. Wait for completion notification from sequencer. 

11. Loop back to 1. 

Priority normalization is done by converting each 

User’s plan priorities into a new value such that the mean 

priority of all of that User’s plans is 0.5. This scheme came 

from Steele and Carter1. It is the fairest of all of the priority 
schemes studied. It is done at every pass through the 

scheduling loop to allow for any-time addition of new 

requests which may change the range of priorities for the 

submitting User. 

Application of constraints and selecting the “best” next 
plan to start are the core of the scheduling system, and are 

discussed in detail below.  

Step 7C above deserves additional explanation2. This 
step tries to let a rising plan continue to rise even though all 

of its constraints are met. Without this logic, an eligible plan 

will be started as soon as its constraints are met. If it is 

rising, this may not make the best use of the observatory, as 

data acquired at higher elevations is usually of better 

quality.  

It should be noted that, after waiting for a dispatcher 
wake cycle, additional plans may become eligible, and the 

formerly single plan will have to contend with these newly 

eligible plans via the Efficiency function. This could be an 

advantage or disadvantage. Remember that, once a plan is 

started, all of its time slots are reserved. Suppose a more 

efficient plan has met constraints after the wake cycle. 

Shouldn’t this one be run anyway? If the first plan had been 

started immediately, it would have blocked the second one. 
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In general, it’s better to be faced with a choice of plans and 

do the most efficient one. 

In any case, once a plan has been chosen to start, all of 
its observations’ time slots are reserved, and its first 

observation is given to the sequencer to execute. As you 

may recall, an observation applies to a single target and 

consists of one or more image-sets, each of which comprises 

one or more images at a single wavelength. The Sequencer 

performs the slew to the target, perhaps checking the 

pointing with a short validation and adjustment exposure, 
then performs an auto-focus if requested or indicated, and 

activates the auto-guider if applicable. It then commands the 

imager to acquire images per the image-sets, switching 

filters as needed. Each filter switch necessitates (at a 

minimum) a refocus, even for supposedly par-focal filters. 

In addition, if the image needs to be guided, and if the 

guiding sensor is behind the filters, the guider must be re-

started with a new exposure/cycle time. Focus changes 

arising from a filter change are handled either by a table of 

focus offsets or by auto-focus (the latter is inefficient!). 

5 Scheduling Rules 

Early simulations led to a couple of basic rules that 

guided the design. Recall that the plan is the basic 

schedulable unit, and may consist of multiple linked 

observations (targets) with specified time intervals between 

them. These scheduling rules are: 

1. Once a plan has been started, it must either run to 

completion (in one night) or fail completely3. In other 
words, a plan’s observations must be acquired as a unit. 

Time spacing between linked observations, and a 

possible “hard start time” needed for target phasing 

constraints, dictate this rule.  

2. Time separation of a plan’s linked observations must 

include a non-zero time tolerance. The scheduler is not 

perfect; therefore the observer must indicate the 

allowable variation between linked observations for 

which the acquired data will still be usable. 

3. Once a plan has been started, its linked observations 

must be considered inviolable. Nothing can pre-empt a 

running plan’s scheduled linked observations. 

For the simple case, a plan that has a single observation, rule 

1 above is intuitively obvious. However, for a plan that has 

multiple linked observations, the rules mean that a plan 

cannot be started unless the following conditions are met: 

1. All of the plan’s linked observations’ constraints can be 

met (at their scheduled time) if the plan is started now.  

2. None of the plan’s linked observations will clash with 

those of plans that have already been started, regardless 

of their priority. 

                                                        
3
 See section 5.1 Best-Efforts Plans wherein this rule may be optionally 

relaxed. 



These rules lead to the following corollaries: 

1. Constraints must be applied to all observations of a 

candidate plan before starting it. The proposed plan 

start time, the estimated times needed to execute each 

of its observations, and the specified time interval 

between its observations all must be used to project 
forward each observation in time, and compute its 

constraint for that time. 

2. A higher priority unstarted plan can never force the 

failure of a lower priority running plan; it can only 

prevent a lower priority plan from getting started. 

3. The projected times for starting each of the candidate 

plan’s observations must be checked that they do not 

overlap/clash with the nominal start times and time 

spans of the remaining linked observations of plans that 

have already been started.  

4. Once constraints and timing-clash checks have been 

applied to an entire plan, it can be started with a high 
degree of confidence that it will complete successfully. 

There is, however, a non-zero chance that it will fail 

because a constraint is not met at the actual time of 

observation. This condition can arise as a result of 

imperfect estimates of times needed for other 

observations. 

It should be clear that constraints must first be applied to all 

observations of each unstarted plan, with forward time 

projection4. If any constraints are not met, the observation 

and its parent plan are vetoed and eliminated from 

consideration during this scheduling pass. The plan will be 
re-queued and reconsidered in subsequent scheduling 

passes, as the constraints could be met at this later time. 

Thus, the veto processes eliminates plans that cannot be 

started at the current time.  

5.1 Best-Efforts Plans 

Field experience with the scheduler revealed that 

Scheduling Rule 1 (Plans must complete in a single night) 

resulted in a limitation that made some types of observing 

impractical. For example, data acquisition for photometry 

applications often requires a time series which extends over 

a long period of time. A plan with linked observations does 

provide time series capability, however if the time series 
needs to be “long”, its chances of being successfully started 

under Scheduling Rule 1 decrease.  

The nature of a dispatch scheduler is such that the 
starting time of a plan cannot be predicted. This limits time 

series to the shortest possible length that can fit into a single 

night when the plan is started at the latest possible time. 

This limitation led to a requirement for modifying 

Scheduling Rule 1 to allow a plan to be started without 

checking to see that it could be completed before being 

stopped by constraints or dawn. In addition, while the plan 

is running, a veto or failure of a linked observation in the 
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time series causes the Plan to be successfully completed, not 

failed.  

This mode of treating plans could be called “do as 
much as you can” or “best-efforts”. The revised scheduler 

was modified to include an optional best-efforts flag on 

plans. If the plan is flagged as best-efforts then (a) it will be 

eligible to be started based only on its first observation’s 

constraints being met, and (b) while running, if a linked 

observation is vetoed or fails, the Plan is marked completed 

instead of failed. 

6 Application of Constraints 

The scheduler has a standard set of constraints (see Table 2) 

that may be applied. If no constraints are applied, plans will 

be eligible based solely on their time span, astronomical 

night (Sun below –18 degrees), and instrument limitations 

retrieved from the Sequencer.  

Besides testing constraints themselves, the constraint 
plug-ins also calculate a time estimate for which the “allow” 

or “veto” condition will remain. This is very important for 

scheduling efficiency, as the latter allows plans to be 

skipped during dispatching until the expiry time for the veto 
state, and the former provides time limit guidance for step 7-

C in Section 4 Scheduling Cycle.  

Table 2. Standard Constraints 

Horizon Observation must be made above the given 
elevation (with respect to the local 

mathematical horizon) 

Air Mass Observation must be made at or below the 
given air mass.  

Sky Quality Observation must be made at given (or 
better) sky quality. Four sky qualities are 
defined: excellent, good, fair, and poor.  

Dark Time Observation must be made with Moon 

“down”, namely 2 degrees below the 
mathematical horizon 

Moon 

Distance 

Observation must be made when the target 

and the Moon are separated by at least the 
given angular distance 

Moon 

Avoidance 

Observation must be made at or below the 

given moonlight level. This is expressed in 
terms of a Lorentzian weighting that is a 
combination of angular distance from the 
Moon and the illumination at its current 
phase.  

 

6.1 Strict versus Lenient Application 

The first version of the scheduler applied constraints only 

for the starting time of each observation, in order to 
minimize scheduling overhead. This was found to be 

insufficient for practical use. With this lenient application of 

constraints, it is possible for an observation to fall out of 

constraints during acquisition. Thus, at least some of the 

acquired data could fail to meet the requirements of the 

constraints.  



In the revised scheduler, application of constraints was 
changed to a strict model, wherein constraints are checked 

for both the starting time and the estimated ending time of 

each observation. Only if constraints are met at both of 

those points in time is the observation considered eligible 

for execution. 

6.2 Custom Constraints 

In addition, custom constraints can be added via a plug-

in API. Thus, applications with unusual requirements can be 

supported without changes to the main dispatcher engine. 

Custom constraints may be developed apart from the code 

base for the scheduler, and simply dropped into a specific 

directory. The next time the scheduler is started, the new 

constraint plug-in is detected, additional tables and relations 

are created in the schedule database, and the new constraint 

will appear in the schedule browser’s user interface. 

7 Rising Plan Delay 

Real world experience and parallel simulations indicated a 

significant weakness when the scheduler is under-

subscribed. Suppose that, during a particular dispatch cycle, 

there is only one eligible plan left after application of 

constraints. In this case the Efficiency function is not 

applicable. There is but one “best” choice. That single plan 

is dispatched immediately. As the run progresses through 
the night, this increasingly happens very shortly after the 

plan first meets its constraints, on the rise.  

As a result, the plan will be started well east of the 

optimum sky position, and the data will be acquired through 
nearly the maximum air mass allowed by its constraints. 

Figure 2 shows the typical behavior of a moderately loaded 

dispatch scheduler without rising plan delay. 

As the scheduler’s loading increases, this effect lessens 
because it’s more likely that multiple plans will be eligible 

in a dispatch cycle, at least one will be higher than it needs 

to be, and the Efficiency function will be able to pick the 

best one. The problem is absent in a heavily loaded situation 

as there are always plans near the meridian and the 

Efficiency function does its job well. 

 
Figure 2. Meridian position with typical dispatcher 

In principle, the solution to this problem involves letting 

rising plans5 continue to rise even though they are eligible. 

But how long should they be allowed to rise beyond the 

point at which they can first be started? Clearly, a rising 

plan cannot (or should not) be allowed to rise beyond any of 

the following points: 

1. The time at which it no longer meets its constraints 

2. The time beyond which it would extend past dawn 

3. The time at which the Plan's centroid gets within half of 

its time-span of the meridian. If started at this point, the 

images will be acquired as close to the meridian (on 

either side) as practical.  

 

But there are other less obvious considerations. Suppose one 

or more additional plans become eligible in the future? It is 

possible that one of these newly eligible plans would be 

selected by the Efficiency function in preference to the 

delayed rising plan. If the selected plan’s first observation 
exceeds the allowable times 1-3 above, the delayed rising 

plan will fall out of constraints before this new plan’s first 

observation completes. The delayed rising plan will never 

be started. 

It should be clear that the more heavily loaded the 

scheduler is, the more likely the above scenario will arise. 

Thus, in general, delaying a rising plan’s start while it rises 

reduces its chance of being run. The longer it is delayed, and 

thus the closer it gets to one of the limits 1-3 above, the 

more likely it will not be run, or run past the meridian. 

On the other hand, if this policy is applied evenly, 
where all rising plans are delayed per the same policy, the 

effect will be to shift the start times of all such plans toward 

the future, improving their observing conditions. 

Furthermore, at the start of the run there will be both rising 
and setting plans. By delaying the rising plans, the 

dispatcher will start with the setting plans, which is 

desirable since they generally have shorter eligible lifetimes. 

Finally, as the schedule becomes more loaded, there 
will more likely be eligible plans in a more favorable 

position, and these will be selected by the efficiency 

function (see below) anyway. By allowing the less well 

positioned plans to rise, the effect is the same as simply 

keeping them eligible and letting the scheduler pick the 

most favorable. So as the schedule becomes more heavily 

loaded, the less will be the effect of delaying rising plans. 

This was proven in the simulations. 

The decision to delay a rising plan must take into 
account the shortest of limits 1-3 above, and the potential 

benefit of allowing it to rise further. Furthermore, the 

amount of time to defer the rising plan (once it has been 

decided to defer it in the first place) should be shorter than 

the threshold of the time-left used to make the deferral 

decision. This allows for some tolerance in time estimates. 
Algorithm complexity could quickly reach a point of 

diminishing returns while impacting scheduler performance.  
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section 8.2 below. 



Therefore, it was decided to implement a simple 
algorithm for rising plan delay: If the plan’s centroid is 

rising, and if there is more than 10% of its time span 

remaining in the shortest of limits 1-3 above, defer the plan. 

If neither of the "hard" limits (1 or 2) will be reached, this 

means the Plan will be started when its centroid comes 
wiothin half of its time-span of the meridian, plus another 

10% lead time. 

 
Figure 3. Meridian position with rising plan delay 

Figure 3 shows the behavior for the same set of requests 

as Figure 2, but with the rising plan delay algorithm 

included. The beneficial effects are clear. Note particularly 

that more images were acquired because the westernmost 

plans were immediately started while the more eastern ones 

were deferred for rising plan delay6. Extensive simulations 

of this algorithm have shown that delaying rising plans is 

surprisingly effective when loading is light, and has an 

unexpectedly low impact on efficiency and total number of 

targets acquired when loading is heavy.  

8 Efficiency Function 

After application of constraints and rising plan delays, each 

remaining eligible plans is tested by computing the 

efficiency index. The eligible plan with the highest 

efficiency index is the one chosen to start now. The purpose 

of the efficiency index calculation is to decide which plan to 

start considering both the scientific priority and the best use 
of the current observing conditions. This is done using an 

Efficiency function of the form: 

   nEn kkk 


8

1
Ε  

where n indexes the plan under consideration, and k indexes 

the eight efficiency terms described below.  

This generic form is taken from Steele and Carter1. 
However, the specific terms of this function, both the 

semantics of some the efficiency terms Ei(n), as well as their 

coefficient values ßi, differ in from Steele and Carter. In 
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failed to get the westernmost targets. 

addition, new efficiency terms were added after experience 

gave rise to their need. 

The knowledge gained via the simulations and user 
feedback provided insight into the behavior of a dispatch 

scheduler, and led to two sets of standard terms and ßi 

coefficients (weights) suitable for most observing tasks. 

These are described following the descriptions of the 

individual terms, in section blah.  

The scheduler also has a mode in which the user can 
adjust the weights, giving complete flexibility. There is no 

plug-in interface for adding efficiency terms; but individual 

terms may be disabled by setting their weight to zero. By 

varying the weights, the behavior of the scheduler can be 

adjusted to meet virtually any need, or to conduct 
engineering studies using the simulators. 

After research, the details of which are beyond the 

scope of this paper, the following efficiency terms/functions 

were chosen for the scheduler: 

8.1 Scientific Priority 

The scheduler allows each User to assign their own 

scientific priorities to their plans rather than forcing 

everyone onto a single priority system. In order to assure 

that allocation of the observatory is fair, each User’s 

priorities are transformed into a normalized system where 

the mean value of their priorities is 0.5: 

5.01 
 

N

p
N

i i
 

where N is the total number of plans in the system for that 

User. The normalized priority for each plan p is stored in the 

scheduler’s database and used in the Efficiency function 

calculation as shown below. 

It is planned for the future to study whether the priority 

of a plan should be scaled according to its number of linked 

observations. This would assign a weight proportional to the 

resources that the plan uses. A further refinement might be 
to weight according to the observatory time needed for the 

plan. 

In any case, the candidate plan’s normalized priority p 

is used to calculate the E1 term of the Efficiency function, 
thus 

)()(1 npnE   

A front panel control “Ignore Priority” is provided so 
that the scheduler user can toggle between ß1=0 and the 

standard ß1 value. This is useful in special situations where 

the user wants to eliminate preference based on scientific 

priority. It is ignored if the scheduler’s efficiency mode is 

set to Custom. The control is ignored if the scheduler’s 

efficiency mode is set to Custom. 

8.2 Nearness to Transit Altitude 

It is intuitively obvious that it is advantageous to 

observe some objects at as low an air mass as possible. The 



simple interpretation of this would imply an E function of 

the form 
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where AC(n) is the current altitude of the first observation of 

the candidate plan n. However, this would unfairly favor 

objects whose declination is near the latitude of the 

observatory (as observed by Steele and Carter1). A better 

criterion is the distance of the object from its transit altitude. 

This implies an E function of the form 
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where AC(n) and AT(n) are the current and transit altitudes of 
the first observation of  plan n.  

But there is an additional consideration that is non-

intuitive but became obvious after early simulations: If the 

candidate plan contains multiple linked observations of 
different targets, it would be incorrect to use the current 

altitude of the first (or any other) of the plan’s observations 

in the above test.  

Instead, the scheduler uses the centroid of all of the 
plan’s linked observation equatorial coordinates as the 

“coordinates” of the plan as a whole. The centroid 

coordinates are then converted to altitude using the local 

sidereal time (LST) projected forward from the current LST 

by half of the plan’s calculated time span, yielding a 

centroidal altitude Ā for the plan as a whole. Thus, 
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where ĀC(n) and ĀT(n) are the current and transit centroid 

altitudes of plan n.  

Simulations revealed that the centroid method is an 
excellent way to treat a plan with multiple linked 

observations at possibly different coordinates. It turns out 

that the plan is most often started at an efficient time, and 

the individual observations are done as closely as practical 

to their transit altitude, on average.  

In section 8.7 below, an experimental alternative to 
Transit Altitude (called Highest Altitude) is discussed. If its 

weight E7 is greater than zero, then E1 must be set to zero as 

these two terms are mutually exclusive. 

8.3 Slewing Overhead 

It is more efficient to observe nearby targets when 

possible, so a slewing overhead term is included in the 

Efficiency function. Considering only the time needed to 

slew to the target unfairly penalizes observations that take a 

comparatively long time to complete. For example, if a 

candidate observation is expected to take an hour to 

complete, a thirty-second slew is not significant. If the 

observation consists of a single ten-second exposure, the 

thirty-second slew has a significant impact on efficiency. 

Thus, slewing overhead is represented by an E function of 

the form 
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where tO is the estimated time needed to complete data 

acquisition for the observation, and tS is the estimated 
slewing time needed to get to the target coordinates of the 

first observation of the candidate plan before starting data 

acquisition. The sequencer provides the scheduler with a 

time-to slew estimate, given a new target’s position, and this 

is tS above. 

Note that this term does not consider the time needed to 
slew to possible subsequent linked observations in the 

candidate plan. There is no way to know the starting point 

for such slews, as the scheduler is intrinsically dynamic.  

A front panel control “Prefer Short Slews” is provided 
so that the scheduler user can toggle between ß3=0 and the 

standard ß3 value. The control is ignored if the scheduler’s 

efficiency mode is set to Custom. 

8.4 Retry Count 

The scheduling rules state that a plan must either 

complete successfully within a night, or fail completely. In 

cases where a plan fails due to changes in sky condition, 

weather shutdowns, or (rare) scheduling errors that cause an 

observation’s specified time window to be missed, the 
scheduler re-queues the plan, making it eligible to be started 

again. This could be in the same night (if constraints can 

still be met) or it may cause it to be delayed until a 

succeeding night. 

In order to provide some level of preference to failed 
and re-queued plans, the scheduler keeps a count of the 

number of times a plan has been re-queued due to failure. 

This retry counter is used to provide a boost in preference in 

the Efficiency function. This term is represented simply as  

 3)(4  RRnE  

where R is the retry count (= 0 if the plan is being started for 

the first time). Furthermore, R is limited to 3, preventing a 

repeatedly failing plan from being unfairly weighted.  

The intention is to have the ß4 -weighting coefficient set 
to a low value, providing only a mild boost in priority for 

re-tried plans. Setting this to a high value could cause a 

failed plan to become stuck in a failure loop. Further study 

is planned to look for instabilities that might be caused by 

this term in the Efficiency function.  

A front panel control “Prefer Failed plans” is provided 
so that the scheduler user can toggle between ß4=0 and the 

standard ß4 value. The control is ignored if the scheduler’s 

efficiency mode is set to Custom. 

8.5 Meridian Crossing 

When the telescope is on a German equatorial mount, a 

high cost is associated with every crossing of the celestial 



meridian. The mount must “flip”, which can take 

considerable time. Besides the actual flip time, additional 

time may be needed to assure precise pointing to the sky 

after the flip due to non-orthogonality between the right 

ascension and declination mechanical axes.  

Thus, meridian crossings have a significant impact on 
efficiency. The scheduler includes a meridian crossing 

“penalty” term in the Efficiency function, as  

MnE 1)(5  

where M is 1 if a meridian crossing is required to reach the 

observation’s target coordinates, and 0 if no meridian 

crossing is required.  

For non-German mounts, the ß5 weighting coefficient is 
set to 0, effectively eliminating this term from the 

Efficiency function.  

A front panel control “Avoid GEM Flip” is provided so 
that the scheduler user can toggle between ß5=0 and the 

standard ß5 value. The control is ignored if the scheduler’s 

efficiency mode is set to Custom. 

8.6 Lateness 

Early in the development and testing of the scheduler, it 

became apparent that, with a moderate to full load, targets 

which are setting in the west during the evening might be 

left behind as the scheduler concentrates around the 

meridian. Since a given target sets even earlier on 

subsequent nights, the problem worsens until the target 
becomes completely unreachable for many months. 

The Rising Plan Delay algorithm can help this 

somewhat as previously described. Nonetheless, it was 
determined that a “lateness” term was needed for 

applications where westernmost targets are more important 

then those at the meridian. The scheduler has a mode 

selector that allows the user to select “Prefer Meridian” 

versus “Prefer West”. The selector enables either the Transit 

Altitude or Lateness terms, respectively. The two terms are 

never used together in the standard modes of scheduler 

operation. 

Ideally, when calculating a lateness term, the time 
remaining before the (currently eligible) plan again becomes 

ineligible for any reason should be used. Thus 
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where Δtrem(n) is the time (hours) until the candidate plan 

would become ineligible due to falling out of constraints or 

falling below the observing horizon. 

8.7 Highest Altitude 

Field experience and simulation revealed a limitation in the 

Transit Altitude term. Some rising targets will never reach 

their transit altitude before dawn. This led to an 

experimental alternative to the Transit Altitude term.  

This new term uses the highest altitude reached by a 
rising plan’s centroid during the current observing night. 

For targets which have already transited at dusk, the transit 

altitude is still used, avoiding interaction with the Lateness 

term described in section 8.6. For targets that do reach 

transit altitude during the night, its effect is identical to 

Transit Altitude. However for eastern targets which rise late 

and don’t transit, the Highest Altitude term will give the 
same boost level for those targets’ highest altitude as does 

Transit Altitude for setting targets and targets that do transit 

during the night.  

The term is calculated using the candidate plan’s 
centroid, as in Transit Altitude, but instead, for rising targets 

only, using the highest altitude reached by the target before 

dawn. Thus 
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Where AH(n) is the highest altitude reached by the nth 
plan’s centroid before dawn, for a rising target, and AT(n) is 

the transit altitude as before. If E7 is set to a non-zero value, 

then E1 must be set to zero, and vice versa. 

The effect of this term is still under investigation. Early 
results are encouraging, and if eastern targets’ efficiency is 

improved without significant effect on transiting targets, it 

will be adopted in place of Transit Altitude. At present, the 

scheduler supports both terms, and E7 may be activated in 

place of E1 by adjusting the weights in custom efficiency 

mode. 

8.8 Observing Conditions 

One of the scheduler’s standard constraints is sky condition. 

Application of this constraint prevents a plan from getting 

started if sky conditions are poorer than required. However, 

if sky conditions are better than required, efficiency dictates 
that the better conditions should not be wasted. If there is a 

lower priority plan whose first observation requires the 

better conditions, it should perhaps be run in preference.  

The simplest scheme would be to require that 
observations be made only at their required conditions. This 

is not efficient, though, as it would prevent usage in better 

conditions than needed even when there is nothing else to 

do. Instead, we use a term suggested by Steele and Carter.  

In the scheduler, sky condition can be one of four 
values, excellent, good, fair and poor. We assign numeric 

values of 3, 2, 1, and 0 to these conditions, respectively. 

Then we calculate the E term as 
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1
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where CR is the required condition number and CA is the 

actual condition number.  



8.9 Standard Efficiency Modes 

It should be clear that end users will be bewildered by the 

effects of adjusting efficiency weights and the resulting 

changes in behavior of the scheduler. Therefore, the 

scheduler was designed with user controls allowing two 

standard modes of operation, plus a third mode in which the 
efficiency weights are user-adjustable: 

1. Prefer Meridian 

2. Prefer West 

3. Custom 

In addition, as previously described, the Priority, Slew 

Distance, Meridian Crossing, and Retry Count terms may be 

enabled or disabled via user controls. When enabled, and 

when the scheduler is running in mode (1) or (2) above, 

standard weights are used. When disabled, the 

corresponding weight is set to zero, eliminating the term 

from the efficiency calculation. To summarize, these 

additional user controls are: 

1. Prefer Short Slews (slewing overhead) 

2. Avoid GEM Flip (meridian crossing) 

3. Prefer Failed plans (retry count) 

4. Ignore Priority (priority) 

Note that the Ignore Priority control is provided for 

engineering purposes; ordinarily the user would never 

suppress the effect of scientific priority. Table 3 shows the 

efficiency weights for the two standard scheduling modes: 

Table 3. Standard Efficiency Weights 

Term Prefer Meridian Prefer West 

Priority 1.0 1.0 

Transit Altitude 0.7 0.0 

Slewing Overhead 0.4 0.4 

Retry Count 0.5 0.5 

Meridian Crossing 0.5 0.5 

Lateness 0.0 0.7 

Highest Altitude
*
 0.0 0.0 

Observing Conditions 0.4 0.4 

* Experimental, available only in Custom mode. 

9 TO Interrupt Facility 

Another issue that appeared during usage of the first version 

of the scheduler was the need for some sort of “target of 

opportunity” (TO) interrupt. The dispatch scheduler is well-

suited to this requirement. The obvious use case is Gamma 

Ray Burst (GRB) follow up. The transient nature of GRBs 

is such that follow up observations must begin within a few 

minutes of a detection by one of the satellites such as Swift7.  

Images being acquired during scheduler operation may 
span many minutes. Thus, it was determined that the 

                                                        
7
 See http://swift.gsfc.nasa.gov/docs/swift/swiftsc.html 

scheduler must have a way to immediately halt data 

acquisition by the sequencer and optionally stop any 

running plans (those which have uncompleted linked 

observations). The latter is needed in order to make way for 

newly added urgent observing requests for GRB follow up. 

The fact that the scheduler can accept new observing 
requests while running makes this sort of thing possible.  

To make this facility most general, it was decided to 

provide an externally accessible application programming 

interface (API) for monitoring tools. This API not only 
provides the interrupt signaling capability, but also a set of 

functions that monitoring tools can use to determine the 

observability of a potential TO. Uses of this facility will be 

the subject of a future paper. 

10 Simulation Design Issues 

The initial development of the scheduler used simulations 

throughout. In the early design phase, narrow-focus 
simulations were used to evaluate various candidate terms in 

the Efficiency function. These simulations are beyond the 

scope of this paper. They served primarily to assist in the 

selection of terms in the Efficiency function.  

Once the framework was integrated into a working 
scheduler, a second phase of simulations was undertaken to 

investigate its behavior, look for anomalies, and get some 

feel for its performance under various conditions. In 

particular, the effects on behavior due to variations in the ßi 

weighting coefficients were studied. 

After the initial release of the scheduler to commercial 
users, their feedback was used to drive further refinement of 

the design and implementation. This ongoing user-driven 

dev elopement yielded, among many other things, the 

Rising Plan Delay algorithm described in Section 7. It 

should be noted that, in contrast to most other observatory 

schedulers, the present scheduler was designed to withstand 

the rigors of widespread usage by non-technical 

astronomer/users and the wide variations in requirements of 
these users.   

The May 2006 revision (3) to this paper occurred 

simultaneous with a review of the scheduler, following 2 

years of deployment in the field at over a dozen sites. Part of 
this review included a new round of simulations following 

design changes. The primary purpose of these simulations 

was to support regression testing (assurance that changes 

did not impair performance and/or reliability). It was found 

that the design changes during the review (including the 

addition of the Rising Plan Delay feature) were in fact 

improvements in most cases, and that there were no 

regressions. 

The January 2018 revision (4) of this paper adds a new 
feature, Plan Completion, to the dispatch decision process. 

To support development and testing, the simulator was 

enhanced to allow generation of realistic requests whose 

structure accurately reflects the typical use by astro-imagers. 

A new simulation section was added for this special 

application and the new Plan Completion feature. 



These simulations will be described along with a few 
illustrative results. 

Table 4. Load Generator Mission Types 

Mission type Fraction 

of total 

load* 

Description 

Random single 

image 

0.6 Single exposure, 

random interval 240 
sec mean, 60 sec. 
std. dev. Random 
priority mean of 5, 
std. dev. of 2. 

LRGB 

Astrophotography 

0.2 Per-target Projects, 
each with multiple 
Plans of 30 minutes 
length, with varying 

exposures in each of 
5 filters (LRGBHa) 
exposure of 300-
600 sec. Scientific 
priority of 3. 

Asteroid/Comet 

search and follow-

up 

0.2 4 observations, each 

image 180 sec. 
integration, spaced 
45 min apart with a 
+/- 10 min 
tolerance. Scientific 
priority of 5.  

* with all workload types turned on. 

 

10.1 Input to Simulations 

In order to provide real-world conditions for 

simulations, a built-in facility is provided for generating a 

Projects consisting of multiple plans of various kinds. The 

generator is capable of creating plans that are representative 

of the astronomy missions shown in Table 4. When 

generating a test workload, it is possible to selectively 

include or exclude each of these mission types.  

The fraction of the total workload represented by each 
mission type is variable. In Table 4, the “fraction of total 

load” values given are those that result if all of the mission 

types are selected. If one or more mission types are 

disabled, the relative mix changes based on the relative 

frequency of the remaining mission types. Some simulations 

used a sub-set of the remaining plan types, and this will be 

clearly indicated in the description of the simulation. 

Target/observation locations are generated randomly 

above 35 degrees elevation over the “dark sky” for the 

entire night on the date and geodetic location set in the 

scheduler. For plans with linked observations of different 
targets, it is possible for targets to be unreachable due to the 

timing. This is a real world. 

Finally, the workload for the night can be set to one of 

the following levels: 

1. Lightly booked (20% of the night) 

2. Fully booked (70% of the night) 

3. Over-booked (150% of the night) 

The percentages refer to the amount of time that all of the 

scheduled observations are estimated to require, not just 

shutter-open time. The overhead times are taken into 

consideration. 

10.2 Multi-Night Simulations 

In order to support long-term studies (such as the effect of 

Plan Completion), the simulator can be set to run 

continuously night after night. At the end of each simulated 

night, the engine log and run detail logs are rotated and 

closed, then the time jumps to the next night's opening time. 

This process will continue until the dispatcher is manually 

stopped. 

When doing multi-night simulations, the workload 
levels described in the previous section don't have the same 

meaning. The workload is multiplied by a "number of 

nights" input, so in reality the first night will be much more 

heavily loaded, etc.  

10.3 Simulated Sequencer 

In order to create as realistic an environment as possible, a 

simulated sequencer was built and attached to the 
scheduler’s’ sequencer interface. The simulated sequencer 

looks at the dispatched observation and its image-sets, and 

simply creates a time delay equal to that which a real 

observatory would require to complete the observation. The 

following common process items are given separate time 

estimates. The actual values of the timing parameters are 

shown in Table 5 below. 

1. Slewing time (based on rates and settling time, runs 

start with telescope at parked position 0 HA, 0 Dec) 

2. Guider startup time (for “long” images only) 

3. Filter switching time (assumes focus offsets 

supported) 
4. Imager download time (varies by binning) 

5. Post processing time (plate solving, calibration, 

stacking) 

The sequencer simulator can be configured to add a 

random variation to the timing values. This is used to test 

the robustness of the dispatcher in the face of inaccurate 

time estimates. In addition, the sequencer simulator can be 

configured to fail observations randomly. Failure of any of 

the images in an observation will cause the observation (and 

the plan) to fail, so the more images are in a plan, the more 

likely it is to fail, all else being equal.  



Table 5. Sequencer Simulator Timings 

Slew rate 3.5 degrees/second 

Slew settling  10 seconds 

Guider startup  30 seconds 

Minimum unguided 

exposure interval 

120 seconds 

Imager download  20 seconds 

Filter switching  20 seconds 

German flip  90 seconds 

Auto-focus  60 seconds 

Image post-processing  5 seconds 

Timing Noise (uniform 

distribution) 

5% of interval* 

* Disabled for some simulations. 

10.4 Time Simulation 

It is clearly required that simulated time be accelerated 

for scheduler simulations. Since scheduling itself is a CPU 

and disk/database bound activity, it is not clear how to treat 

scheduling time as part of the overall observatory efficiency. 
The solution is to accelerate the clock only during the time 

the sequencer simulates acquiring the data for the 

dispatched observation and image-sets and when the 

scheduler is sleeping (no work to do). The clock runs at real 

time during the scheduling phase. This most accurately 

reflects the effect of scheduling time on overall efficiency. 

All sources of time, including time stamps in the log file, 

come from the 2-mode clock. 

11 Simulations and Results 

This section presents the results of some of the simulations, 

showing the effects of varying the ßi -weighting coefficients 

on timing and hour angle at acquisition. Two data sets were 

generated: one consisting of random targets of one exposure 

each, with random exposure intervals and random priorities, 

and the other consisting of a mixture of the random targets 

and sets of random targets of four time-spaced linked 

observations of each with fixed exposure intervals and 

priorities. See Table 4 for specifics.  

The number of targets was chosen for a moderate 

(70%) load and an overloaded (150%) level. The test loads 

were generated by using the timing information in Table 5, a 

latitude of 33N, longitude of 111W, a starting time at 
astronomical twilight on March 25, 2006 (UTC), and 

generating random targets computing the total time needed 

to acquire each image of that target, and adding that to a 

running total. Since slewing time is not known (it is order-

dependent) a guess of 45 degrees is used. When the running 

total reached 70% of the total night-time from astronomical 

twilight to astronomical twilight, generation was stopped. 

For example, since the random targets also had randomly 

varying exposure intervals, sometimes the guider would be 

needed (incurring additional guider startup time).   

Each of these target sets were simulated over a night 
three times, with each of just three of the terms in the 

Efficiency equation set for ßI = 1.0 and the rest set to 0.0 

(disabling them). The three terms studied were Priority, 

Transit Altitude, and Slew Time.  

11.1 Random Single Images – Moderate (70%) Load 

The first set of simulations uses a Project consisting of 69 

plans, 1 observation and 1 image-set in each with no 
constraints apart from being above the observing horizon of 

25 degrees. Figure 4 shows the distribution of targets in 

equatorial coordinates.  

 
Figure 4. Targets for single image moderate load test 

Priorities are random with normal distribution, mean of 5.0, 

and standard deviation of 2.0. Exposure intervals are 

random with normal distribution, 240 second mean, 

standard deviation of 60 seconds. 

11.1.1 Priority Only (moderate load) 

The first simulation with the random-images data set was 

run with only the Priority term in the Efficiency equation. 

This caused the dispatcher to always pick the eligible plan 

that has the highest scientific priority. Figure 5 below shows 

the resulting distribution of acquisition locations relative to 

the meridian.  

 
Figure 5. Target sequence for 100% priority (moderate) 

For this test, 66 of the 69 available plans were completed. 

Analysis of the log file of the run confirmed that the plans 

that were not run were those with the lowest scientific 
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priority. Because, in this scenario, the targets were picked 

without regard to position and slewing time, the excessive 

motion (clearly visible in Figure 5 and Figure 6) adversely 

affected the efficiency of the dispatcher. 

 
Figure 6. Meridian chart for 100% priority (moderate) 

11.1.2 Transit Altitude Only (moderate load) 

Next, the same random-images data set was re-run, this time 

with only the Transit Altitude term in the Efficiency 

equation. This caused the dispatcher to always pick the 

eligible target that is closest to its transit altitude. The 

results of this test are shown in Figure 7 and Figure 8 below. 

Predictably, most motion was in declination and the 

deviation from the meridian was far less. As the scheduler 

ran out of plans to choose from, it started picking the 

remaining targets which were all to the east of the meridian, 
so the trend is to the east (positive hour angle).  

In this case, 65 of the 69 available plans were 

completed. Analysis of the log file revealed that those that 

were missed were early evening targets (lowest right 
ascension) whose meridian passage had already occurred. 

At the beginning of the night, there are plenty of targets 

approaching their meridian passage, and these are of course 

given preference in this scenario (transit-altitude-only). By 

the time the dispatcher got low on eligible targets, those 

early targets had dropped below the 25-degree altitude limit 

in the west.  

 
Figure 7. Target sequence for 100% transit alt. (moderate)  

 
Figure 8. Meridian chart for 100% transit alt. (moderate) 

11.1.3 Lateness Only 

Next, the effect of the (revised) Lateness term was 
investigated at moderate load. This resulted in the dispatcher 

trying to choose the most westward targets, as shown in 

Figure 9 and Figure 10 below. Again, however, when the 

dispatcher ran out of targets, it started picking the ones to 

the east as they rose and came into constraints. In this test, 

all 69 possible plans were successfully completed, since the 

dispatcher started with those that were about to set, rather 

than starting near the meridian while some westward targets 

set and became inaccessible, as in the previous test. 

 
Figure 9. Target sequence for 100% Lateness (moderate) 

 
Figure 10. Meridian chart for 100% Lateness (moderate) 

11.1.4 Slewing Distance Only (moderate load) 

The random-images data set was run again with only the 

Slew-Overhead term in the Efficiency function. This caused 

the dispatcher to always pick the plan whose target is closest 

to the previous one. The results of this test are shown in 

Figure 11 and Figure 12 below. Minimizing slew time 

allowed the all 69 plans to complete, and as both charts 

show, the dispatcher usually selects the closest target from 

the previous one, wandering across the sky to achieve this 

goal. Slewing distances become large towards the end of the 
run as it does the final few targets. 
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Figure 11. Target sequence for 100% slew dist. (moderate) 

 
Figure 12. Meridian chart for 100% slew dist. (moderate) 

11.2 Random Single Images – Overload (200%) 

The effects of the priority and slewing distance terms in the 
Efficiency function do not change with loading. Therefore 

the over-loaded tests are presented only for the second and 

third cases above (Transit Altitude and Lateness only).  

In this series, the number of requested targets was 
increased to 200% of the estimated maximum targets that 

could be acquired (again given the same observing overhead 

times as well as imaging times as in the previous tests). This 

resulted in 188 total target requests. The individual targets 

were generated using the same random priorities and 

exposure intervals as already described (though priority was 

ignored in these tests for clarity, as already explained). 

11.2.1 Transit Altitude Only (over-loaded) 

The target sequence chart in Figure 13 shows the sky 

distribution of the targets used in the 200% over-loaded 

tests, as well as the targets actually acquired when using 

only the transit altitude term in the Efficiency function. As 

expected, both early and late targets were skipped, in 

preference for those that happened to be nearest to the 

meridian at each dispatch cycle. This resulted in targets that 

were neither early nor late also being skipped, simply 

because there were too many to acquire.  

The meridian chart in Figure 14 clearly shows the effect 
of the transit altitude term of the Efficiency function when 

the scheduler has more work requested than it can do. At all 

times there are many plans eligible, thus the Efficiency 

function directs the scheduler to choose the plan nearest to 

the meridian as its next best. Only 93 plans were 
successfully completed, however. 

 
Figure 13. Target sequence for 100% transit alt. (overload) 

 
Figure 14. Meridian chart for 100% transit alt. (overload) 

11.2.2 Lateness Only (over-loaded) 

With only the Lateness term in the Efficiency function, the 

target sequence chart in Figure 15 shows a total preference 

for the earliest targets. In this case, more plans were run 

(106 versus 93), presumably because no early targets are 

lost, and the telescope stays to the west as much as possible.  

 
Figure 15. Target sequence for 100% lateness (overloaded) 
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Figure 16. Meridian chart for 100% Lateness (overloaded) 

11.3 Effect of Rising Plan Delay 

Next, the effects of Rising Plan Delay were investigated at 

both moderate load (where its effects should be beneficial) 

and over-load (to see if it has detrimental effects). Priority 
and Slew Distance terms were disabled for clarity. The same 

sets of observing requests for moderate and overload cases 

were used. 

11.3.1 Transit Alt. and Rising Plan Delay (moderate) 

At a moderate load, the beneficial effects of Rising Plan 

Delay are clear when comparing Figure 18 with Figure 8 
(same case but without Rising Plan Delay). All 69 possible 

plans were acquired. Most were acquired very close to the 

meridian, well above their constraints. Only early and late 

targets were (necessarily) acquired away from the meridian.  

 
Figure 17. Target sequence for 100% Transit Altitude 

with Rising Plan Delay (moderate) 

 
Figure 18. Meridian chart for 100% Transit Altitude 

with Rising Plan Delay (Moderate) 

11.3.2 Lateness and Rising Plan Delay (moderate) 

With Rising Plan Delay in effect, switching from 100% 

Transit Altitude to 100% Lateness caused very little change 

in the behavior of the dispatcher under moderate load. 

Again, all plans were completed. The only differences 

appeared at the beginning and end of the run, where the 

early targets were acquired earlier (and in a more favorable 

position) and some late targets were acquired in less 

favorable positions. 

 
Figure 19. Target sequence for 100% Lateness 

with Rising Plan Delay (moderate) 

 
Figure 20. Meridian chart for 100% Lateness 

with Rising Plan Delay (moderate) 
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11.3.3 Transit Alt. and Rising Plan Delay (over-loaded) 

Comparing Figure 22 with Figure 14 shows that the primary 

effect of Rising Plan Delay on an over-loaded schedule with 

Transit Altitude only is to allow more plans to be completed 

(109 versus 93), a benefit. Figure 22 shows a few deviations 

from the meridian through the run, but overall there seems 

to be no detrimental effect.  

 
Figure 21. Target sequence for 100% Transit Altitude 

with Rising Plan Delay (over-loaded) 

 
Figure 22. . Meridian chart for 100% Transit Altitude 

with Rising Plan Delay (over-loaded) 

11.3.4 Lateness and Rising Plan Delay (over-loaded) 

Comparing Figure 24 with Figure 16 shows that the effect 
of Rising Plan Delay on an over-loaded schedule with 

Lateness only is minimal. Again, more targets are acquired 

(though only a few, 108 versus 105), and there seem to be 

no detrimental effects. Figure 24 shows virtually the same 

target positions as Figure 16. 

 
Figure 23. Target sequence for 100% Lateness 

with Rising Plan Delay (over-loaded) 

 
Figure 24. Meridian chart for 100% Lateness 

with Rising Plan Delay (over-loaded) 

11.4 Combined Single and Quadruplets 

The final set of simulations to be presented consists of 

combinations of plans containing random single images and 

plans each containing four linked observations (one 180-

second image of each) of the same target (a simulated 
asteroid follow up). The linked observations were spaced 45 

min apart with a 10 min. The dispatcher was configured to 

enable Rising Plan Delay and use only the Transit Altitude 

term in the Efficiency function. As before, other Efficiency 

terms such as priority were ignored for clarity. Again, the 

goal was to assure that Rising Plan Delay does not adversely 

impact the operation of the scheduler. 

11.4.1 Combined Plans (moderately loaded) 

The moderate load combined test consisted of 42 plans total, 

with 21 being random single images as previously described 

and 14 being simulated asteroid follow up plans with 4 

linked observations as just described. Figure 26 shows that 

Rising Plan Delay is effective in preventing eastward drift 

of observing position as before. Of course there are 

deviations away from the meridian for the plans with linked 

observations. It is worth noting that, apart from early 

evening plans, the distribution of observing position about 
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the meridian is roughly symmetrical. This was not the case 

before the introduction of Rising Plan Delay. 

 
Figure 25. Target sequence for combined plans (moderate) 

 
Figure 26. Meridian chart for combined plans (moderate) 

12 Conclusions 

The simulations results show that a dispatch scheduler is a 

practical (and in some ways, superior) alternative to queue-

based optimizing schedulers. It has the following 

advantages: 

1. Responds to changes in observing conditions and 

dispatches requests that can be done in the current (or 

worse) conditions while trying to do the ones that must 

be done in the current (or better) conditions. 

2. May be interrupted by bad weather, and will resume by 

dispatching the best observations instead of merely 
delaying uncompleted ones (which will be west of their 

originally planned places). 

3. Accepts new observing requests during the run and 

makes them immediately available. 

4. Allows modification of unstarted requests at any time. 

5. Will retry failed observations automatically.  

It should be noted, however, that a dispatch scheduler is not 

applicable in all situations. At one end of the spectrum is a 

plan with many short exposures, such as used by a 

supernova search program. In this case, observing efficiency 

is paramount. The additional dispatch time between (very 

short) plans, and the randomness of the traversal sequence 

between targets, may significantly impact the total number 

of images that can be acquired in a run. For example, 3 

additional seconds of dispatch time over 600 images reduces 
observing time by a half hour. At the other end of the 

spectrum is the astro-photography application in which a 

single target is imaged for long periods of time, up to the 

entire night. In this case, dynamic scheduling is probably 

unnecessary. 

12.1 Rising Plan Delay 

The behavior of the revised dispatcher with Rising Plan 

Delay conditions exceeded expectations. It seems clear from 

the evidence presented that Rising Plan Delay solves the 

“eastward drift” problem by improving the observing 

positions for light and moderate schedule booking levels, 

while having no adverse effects on scheduler behavior under 
over-booked conditions. More tests are needed, however, to 

validate “edge conditions” and to check for stability 

problems when recycling plans that have failed. For now, 

plans are not automatically recycled. Revision Status 

The May 2006 paper is a general revision to the paper 
of the same title originally submitted for review and 

publication to the Society for Astronomical Sciences on 

March 30, 2004, and covers more detail as well as final 

design aspects at the time of commercial release (including 

the addition of the Rising Plan Delay feature). 

The November 2014 revision (3) just corrected a few 
grammatical and typographic errors. 

The January 2018 revision (4) includes information on 
the new Project Completion weighting factor for dispatch 

decisions. Also included is a description of the changes and 

additions to the test plan generator in support of simulating 

realistic workloads for astro-imaging and multi-night 

simulation. 

The September 2018 revision (5) of this paper 
(September 2018) makes some small changes in the Rising 

Plan Delay algorithm, to prevent excessive imaging past 

(west of) the meridian.  
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efficiency weights. More recently, he indicated the strong 

need for a change which resulted in the rising plan delay 
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Finally, many of the changes and additions to the 
scheduler in its new version are due to the feedback of the 

scheduler users. In particular, the team of observers using 

the Sonoita Research Observatory (Walt Cooney, John 

Gross, Arne Henden, Dirk Terrell), as well as Steve Brady 
(a prolific CV observer), were the source of excellent 
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