
Dispatch Scheduling of Automated Telescopes

Robert B. Denny
DC-3 Dreams SP, Mesa, Arizona

Abstract: Automated telescope scheduling systems have traditionally focused on optimizing the use of the

observatory, minimizing overhead and maximizing shutter-open time. However, most observatories do not enjoy
consistently good skies. Conditions can change significantly during an observing session, leading to schedule breakage.
In addition, science observing may require prompt follow-up observations that arise during a night’s observing. These
issues give rise to the need for a scheduling system that is capable of recovering from periods of bad skies, wind, etc. ,
and of integrating newly added observations during operation, all without operator intervention. The concept of “just-
in-time” or dispatch scheduling, where the scheduler dynamically makes a “best” choice for the next observation, will
be discussed. A dispatch scheduler was constructed, tested initially (as described in the previous versions of this paper),

deployed and supported as a commercial product then revised per user feedback and ongoing research. This experience
exposed two weaknesses in the design. Solutions have been found and validated. One solution also improved the
overall efficiency of the scheduler. This paper will describe the revised scheduler, the specific weaknesses encountered,
and the solutions to this weakness, Rising Plan Delay and an additional efficiency function coefficient Project
Completion.

Revised (5): September 2018
© 2004-2018, Robert B. Denny, Mesa, AZ.

1 Introduction

The process of acquiring data for both astronomical science

and artistic astroimaging involves planning, scheduling, and

observing. These three phases of data acquisition may be

viewed as what, when, and how, respectively. Managing
acquired data (where) is a separate topic that will not be

addressed in this paper. When designing tools for data

acquisition, it is important to keep the three considered

activities clearly separated.

1. Planning establishes what data is needed for the

mission, and may place constraints that affect

acquisition timing in order to assure that the data meets

the minimum quality needed to support the mission.

Typically, planning is done by the investigator or

astronomer.

2. Scheduling makes the decision as to when requested

data can and should be acquired, in order to meet the
constraints. This is the role of a scheduler.

3. Observing involves the control of the observatory

instruments and software to capture a package of data

(which may be multiple images at multiple

wavelengths, for example). The use of a scheduler

implies that a sequencer is used to automate the data

acquisition process when directed by the scheduler.

This paper, and the engineering work it describes, focuses

only on scheduling. The implications of this may not be

immediately obvious. Suppose a request is submitted for an

observation with coordinates and constraints that make it
impossible to observe at any time during the year regardless

of weather. It is not the scheduler’s job to alert the user that

he has entered an impossible request. It simply will never

schedule the impossible request. It is the job of the

astronomer (and any planning tool) to create an observing

plan that is practical as well as supportive of the mission.

One can envision multiple specialized planning tools that

feed their requests into the scheduler through a common

protocol. As stated, these tools are not a topic of this paper.

2 Background

During the initial phase of this project, it was found that

virtually all of the research on scheduling of resources had

optimal resource utilization as the goal. This typically

involves a complex time-consuming process, and applied to

astronomical observing, produces a static schedule for an

entire night’s observing. The success of such an optimized

static schedule depends on (a) problem-free execution of

each observation, (b) perfect knowledge of the time duration
needed for each observation, and (c) perfect fore-knowledge

of the weather throughout the night.

Once an observation fails, any linked observations also
must fail, leaving holes in the schedule. If the telescope

needs an un-forecast refocusing, the schedule is broken,

requiring observations (and possibly linked observations) to

be skipped. If the sky conditions or weather changes, it can

eliminate an entire class of observations from consideration

due to their constraints being violated. For example, a thin

cirrus layer could preclude all-sky photometry, but there

could be other as-yet unscheduled observations that could

be made without deleterious effect.

These considerations led to the desire to make the
scheduler dynamic in some way, able to adapt to changing

conditions, new requests, and acquisition errors, while still

maintaining reasonable efficiency. Further research in this

direction produced the Steele and Carter paper (ref. 1). The

concepts discussed in their paper provided basic concepts
for the design of the present scheduler. However, very little

detail is contained in Steele and Carter, and the difficult

problem of handling linked observations is not treated at all.

The basic concepts presented in their paper will be briefly

described in the following sections. No claim of originality

is made for these concepts.

2.1 Scheduler Design

Steele and Carter identify the following three criteria for a

“good schedule”: (a) fairness, (b) efficiency, and (c)

sensibility. A fair schedule balances time allocations

between users such that they all share good and bad

observing times equitably. An efficient schedule is one that
maximizes instrument utilization and strives to match

observations with required conditions. A sensible schedule

is one that attempts only those observations that are possible

under the current observing conditions.

The ACP Scheduler (ACPS) is a practical adaptation
of Steele and Carter’s concepts combined with additional

features and practicalities needed to turn their basic ideas

into a commercial-class scheduling engine. It is designed to

handle observation requests from multiple users. Requests

are kept in a permanent relational database store. The

requests can be entered months ahead of the time at which

constraints will first be met, or minutes before they are

needed.

Throughout this paper, many of the fine-grained details
and features of the scheduler are omitted for clarity. They

don’t affect the basic conceptual knowledge gained from

user experiences and simulations.

Table 1. Scheduler Data Hierarchy

User Top-level node. Represents a user or using
organization, not necessarily an observer or
investigator

Project Child of User. Represents a scientific
project that may require multiple sets of
data

Plan Child of Project. This is the basic

schedulable unit. It represents one or more
observations that must be performed as a
group and within a single night.

Observation Child of plan. Represents a single target
beginning at a single time. This is the

basic unit of work for the observatory.
Constraints are applied to observations.
Linked observations are entered as separate
observations with the same parent plan,

with specified time separations.

ImageSet Child of Observation. Represents one or
more images to be acquired back-to-back
and at a single wavelength.

In order to understand the descriptions of scheduler
behavior in later sections, it is necessary to define some

terminology. The scheduler request database is hierarchical

and consists of the following node types, as shown in Table

1 above.

The simplest plan is one with a single observation and a
single image-set that specifies a single image. Plans with

more than one observation form linked observations with a

specified time interval between them.

Each observation carries with it a set of constraints that
limit the times at which the observation can be taken.

Example constraints include altitude, air mass, seeing, moon

phase/elongation, and sky condition. The scheduler supports

an open-ended set of constraints through a plug-in facility.
For this paper, only a basic “above the horizon” altitude

constraint was used in simulations. A more complex set of

constraints would serve only to make it more difficult to

interpret results.

Priorities are supported, and are applied to plans. Rather
than impose a fixed priority range on everyone, each User is

allowed to assign any range of priority values to their plans.

During the scheduling cycle, (see below) priorities are

normalized in a way that maximizes fairness between Users.

2.2 System Architecture

Figure 1 is a software block diagram of a robotic

observatory controlled by the scheduler and a sequencer,

augmented by user tools for browsing the request database

and for planning observing requests.

The sequencer is responsible for automatically
manipulating all of the observatory instruments and

equipment needed to acquire the data for each observation

(the basic unit of work for the observatory). The scheduler

was designed with a standard sequencer interface, allowing
it to potentially be used with a variety of robotic observatory

control systems. Two sequencers have been developed at

this point: (1) a simulator sequencer for research and testing,

and (2) a commercial observatory control system1.

Data

Browser

Dispatcher

Planner

Constraint

Plugins

Dispatcher
Dispatcher

Sequencers

Scheduler

Figure 1. Software Block Diagram

The scheduler consists of a dispatcher and a set of

constraint plug-ins. As described elsewhere, constraints can

be separately developed, allowing for addition of custom

constraints for special applications. The dispatcher is

responsible for selecting plans to start, and for dispatching

observations to the active sequencer.

The centerpiece of the system is a relational database
which contains all of the observing requests and the current

states of each. All of the components of the system

communicate through the database via an operating system

vendor supplied database engine plus a wrapper object that

isolates the system components from low level database

operations and Structured Query Language (SQL)
statements. Thus, the database looks like a special purpose

black box with all storage and retrieval details hidden from

the system components.

3 Scheduler Operation - Overview

Fundamentally, ACPS is a dispatch scheduler. At each

scheduling cycle, it decides which of the eligible plans to

start next. Once started, a plan must run to completion or
fail completely. If a plan fails, it is re-queued and will be

attempted again later. It is possible (via a user control) to

give preference to failed (and thus re-queued) plans with

respect to those that have never been started.

When an observation is completed, the scheduler looks
to see if one or more new plans can be started (based on

constraints) before an already-running plan’s next linked

observation comes up for acquisition. At a minimum, the

first observation of a candidate new plan must fit into the

time remaining before any already-scheduled observation

(belonging to any already-started plan). If a candidate new

plan has multiple linked observations, all of them are

1
 ACP Observatory Control Software, developed by the author.

checked against all of the linked observations in already-

started plans. If there are any clashes, the candidate plan

will not be considered. There is no requirement that linked

observations be spaced at regular intervals.

3.1 Efficiency Function

After all eligible plans are checked for constraints and
timing clashes with running plans, the remaining eligible

plans form the set from which the scheduler picks the “best”

plan to start in this cycle. As described in detail below, this

is done by applying an efficiency function to each plan. The

plan with the highest efficiency index will be started. Of

course, if only one plan remains after the preceding tests, it

will be started without qualification.

3.2 Concurrent plan Execution

It is important to understand that multiple plans may be

active at any point in time. This will happen if any plan with

more than one linked observation is active. As we will see,

one of the scheduler’s important tasks is to avoid starting a
new plan if any of its observations would clash in time with

any of the linked observations of running plans.

Any point in time, the remainder of the night may
already have time slots reserved for doing linked

observations of running plans. These time slots are in

general irregularly spaced in time and occupy irregular

intervals of time as well. Thus, multiple plans may be

concurrently active, and this is an important feature of the

scheduler if it is to achieve its goal of efficiency.

4 Scheduling Cycle

The scheduler runs a continuous loop consisting of the

following steps (simplified for clarity):

1. Calculate estimated time spans of any newly added

plans

2. Normalize priorities.

3. Start any plans which have specified an absolute start

date/time, and for which that date/time has arrived. If

such a plan is started, send its first observation to the

Sequencer. Jump to (10).

4. Look to see if any already-started plans have an

observation that is due now. If so, send that observation

to the sequencer. Jump to (10).
5. Change unstarted plans that were previously vetoed and

deferred by constraints, and for which the deferral time

has expired, back to a status of pending (eligible to be

started now).

6. Change unstarted plans that were previously vetoed due

to a time clash back to a status of pending.

7. At this point, only eligible pending plans are left to

consider. For each of them:

A. Check to see if the entire plan can be completed

before sunrise if it were to be started now. If not,

defer the plan, removing it from consideration until

the next night.

B. Check each observation of the plan (if more than

one observation, the second and subsequent will

specify a time from the previous observation),

using the current time as a baseline, as follows:

1. Apply observer-specified constraints at the

(estimated) time. If constraints cannot be met,

veto the plan and move on to the next

candidate.

2. Test to see that the observation does not clash

with any observation belonging to an already-

started plan. If a clash is detected, veto the

plan and move on to the next.

C. For a rising plan, check to see if it can safely be

allowed to continue to rise even though it would

now be eligible. If so, defer it for a bit of time.

8. If there are any eligible (unstarted) plans left at this
point, pick the “best” one to start. This is the critical

operation, the one that determines the behavior of the

scheduler. We will expand on this below.

9. Send the first observation of the selected plan to

sequencer for data acquisition.

10. Wait for completion notification from sequencer.

11. Loop back to 1.

Priority normalization is done by converting each

User’s plan priorities into a new value such that the mean

priority of all of that User’s plans is 0.5. This scheme came

from Steele and Carter1. It is the fairest of all of the priority
schemes studied. It is done at every pass through the

scheduling loop to allow for any-time addition of new

requests which may change the range of priorities for the

submitting User.

Application of constraints and selecting the “best” next
plan to start are the core of the scheduling system, and are

discussed in detail below.

Step 7C above deserves additional explanation2. This
step tries to let a rising plan continue to rise even though all

of its constraints are met. Without this logic, an eligible plan

will be started as soon as its constraints are met. If it is

rising, this may not make the best use of the observatory, as

data acquired at higher elevations is usually of better

quality.

It should be noted that, after waiting for a dispatcher
wake cycle, additional plans may become eligible, and the

formerly single plan will have to contend with these newly

eligible plans via the Efficiency function. This could be an

advantage or disadvantage. Remember that, once a plan is

started, all of its time slots are reserved. Suppose a more

efficient plan has met constraints after the wake cycle.

Shouldn’t this one be run anyway? If the first plan had been

started immediately, it would have blocked the second one.

2
 See section 7 Rising Plan Delay

In general, it’s better to be faced with a choice of plans and

do the most efficient one.

In any case, once a plan has been chosen to start, all of
its observations’ time slots are reserved, and its first

observation is given to the sequencer to execute. As you

may recall, an observation applies to a single target and

consists of one or more image-sets, each of which comprises

one or more images at a single wavelength. The Sequencer

performs the slew to the target, perhaps checking the

pointing with a short validation and adjustment exposure,
then performs an auto-focus if requested or indicated, and

activates the auto-guider if applicable. It then commands the

imager to acquire images per the image-sets, switching

filters as needed. Each filter switch necessitates (at a

minimum) a refocus, even for supposedly par-focal filters.

In addition, if the image needs to be guided, and if the

guiding sensor is behind the filters, the guider must be re-

started with a new exposure/cycle time. Focus changes

arising from a filter change are handled either by a table of

focus offsets or by auto-focus (the latter is inefficient!).

5 Scheduling Rules

Early simulations led to a couple of basic rules that

guided the design. Recall that the plan is the basic

schedulable unit, and may consist of multiple linked

observations (targets) with specified time intervals between

them. These scheduling rules are:

1. Once a plan has been started, it must either run to

completion (in one night) or fail completely3. In other
words, a plan’s observations must be acquired as a unit.

Time spacing between linked observations, and a

possible “hard start time” needed for target phasing

constraints, dictate this rule.

2. Time separation of a plan’s linked observations must

include a non-zero time tolerance. The scheduler is not

perfect; therefore the observer must indicate the

allowable variation between linked observations for

which the acquired data will still be usable.

3. Once a plan has been started, its linked observations

must be considered inviolable. Nothing can pre-empt a

running plan’s scheduled linked observations.

For the simple case, a plan that has a single observation, rule

1 above is intuitively obvious. However, for a plan that has

multiple linked observations, the rules mean that a plan

cannot be started unless the following conditions are met:

1. All of the plan’s linked observations’ constraints can be

met (at their scheduled time) if the plan is started now.

2. None of the plan’s linked observations will clash with

those of plans that have already been started, regardless

of their priority.

3
 See section 5.1 Best-Efforts Plans wherein this rule may be optionally

relaxed.

These rules lead to the following corollaries:

1. Constraints must be applied to all observations of a

candidate plan before starting it. The proposed plan

start time, the estimated times needed to execute each

of its observations, and the specified time interval

between its observations all must be used to project
forward each observation in time, and compute its

constraint for that time.

2. A higher priority unstarted plan can never force the

failure of a lower priority running plan; it can only

prevent a lower priority plan from getting started.

3. The projected times for starting each of the candidate

plan’s observations must be checked that they do not

overlap/clash with the nominal start times and time

spans of the remaining linked observations of plans that

have already been started.

4. Once constraints and timing-clash checks have been

applied to an entire plan, it can be started with a high
degree of confidence that it will complete successfully.

There is, however, a non-zero chance that it will fail

because a constraint is not met at the actual time of

observation. This condition can arise as a result of

imperfect estimates of times needed for other

observations.

It should be clear that constraints must first be applied to all

observations of each unstarted plan, with forward time

projection4. If any constraints are not met, the observation

and its parent plan are vetoed and eliminated from

consideration during this scheduling pass. The plan will be
re-queued and reconsidered in subsequent scheduling

passes, as the constraints could be met at this later time.

Thus, the veto processes eliminates plans that cannot be

started at the current time.

5.1 Best-Efforts Plans

Field experience with the scheduler revealed that

Scheduling Rule 1 (Plans must complete in a single night)

resulted in a limitation that made some types of observing

impractical. For example, data acquisition for photometry

applications often requires a time series which extends over

a long period of time. A plan with linked observations does

provide time series capability, however if the time series
needs to be “long”, its chances of being successfully started

under Scheduling Rule 1 decrease.

The nature of a dispatch scheduler is such that the
starting time of a plan cannot be predicted. This limits time

series to the shortest possible length that can fit into a single

night when the plan is started at the latest possible time.

This limitation led to a requirement for modifying

Scheduling Rule 1 to allow a plan to be started without

checking to see that it could be completed before being

stopped by constraints or dawn. In addition, while the plan

is running, a veto or failure of a linked observation in the

4
 See section 6 Application of Constraints for details.

time series causes the Plan to be successfully completed, not

failed.

This mode of treating plans could be called “do as
much as you can” or “best-efforts”. The revised scheduler

was modified to include an optional best-efforts flag on

plans. If the plan is flagged as best-efforts then (a) it will be

eligible to be started based only on its first observation’s

constraints being met, and (b) while running, if a linked

observation is vetoed or fails, the Plan is marked completed

instead of failed.

6 Application of Constraints

The scheduler has a standard set of constraints (see Table 2)

that may be applied. If no constraints are applied, plans will

be eligible based solely on their time span, astronomical

night (Sun below –18 degrees), and instrument limitations

retrieved from the Sequencer.

Besides testing constraints themselves, the constraint
plug-ins also calculate a time estimate for which the “allow”

or “veto” condition will remain. This is very important for

scheduling efficiency, as the latter allows plans to be

skipped during dispatching until the expiry time for the veto
state, and the former provides time limit guidance for step 7-

C in Section 4 Scheduling Cycle.

Table 2. Standard Constraints

Horizon Observation must be made above the given
elevation (with respect to the local

mathematical horizon)

Air Mass Observation must be made at or below the
given air mass.

Sky Quality Observation must be made at given (or
better) sky quality. Four sky qualities are
defined: excellent, good, fair, and poor.

Dark Time Observation must be made with Moon

“down”, namely 2 degrees below the
mathematical horizon

Moon

Distance

Observation must be made when the target

and the Moon are separated by at least the
given angular distance

Moon

Avoidance

Observation must be made at or below the

given moonlight level. This is expressed in
terms of a Lorentzian weighting that is a
combination of angular distance from the
Moon and the illumination at its current
phase.

6.1 Strict versus Lenient Application

The first version of the scheduler applied constraints only

for the starting time of each observation, in order to
minimize scheduling overhead. This was found to be

insufficient for practical use. With this lenient application of

constraints, it is possible for an observation to fall out of

constraints during acquisition. Thus, at least some of the

acquired data could fail to meet the requirements of the

constraints.

In the revised scheduler, application of constraints was
changed to a strict model, wherein constraints are checked

for both the starting time and the estimated ending time of

each observation. Only if constraints are met at both of

those points in time is the observation considered eligible

for execution.

6.2 Custom Constraints

In addition, custom constraints can be added via a plug-

in API. Thus, applications with unusual requirements can be

supported without changes to the main dispatcher engine.

Custom constraints may be developed apart from the code

base for the scheduler, and simply dropped into a specific

directory. The next time the scheduler is started, the new

constraint plug-in is detected, additional tables and relations

are created in the schedule database, and the new constraint

will appear in the schedule browser’s user interface.

7 Rising Plan Delay

Real world experience and parallel simulations indicated a

significant weakness when the scheduler is under-

subscribed. Suppose that, during a particular dispatch cycle,

there is only one eligible plan left after application of

constraints. In this case the Efficiency function is not

applicable. There is but one “best” choice. That single plan

is dispatched immediately. As the run progresses through
the night, this increasingly happens very shortly after the

plan first meets its constraints, on the rise.

As a result, the plan will be started well east of the

optimum sky position, and the data will be acquired through
nearly the maximum air mass allowed by its constraints.

Figure 2 shows the typical behavior of a moderately loaded

dispatch scheduler without rising plan delay.

As the scheduler’s loading increases, this effect lessens
because it’s more likely that multiple plans will be eligible

in a dispatch cycle, at least one will be higher than it needs

to be, and the Efficiency function will be able to pick the

best one. The problem is absent in a heavily loaded situation

as there are always plans near the meridian and the

Efficiency function does its job well.

Figure 2. Meridian position with typical dispatcher

In principle, the solution to this problem involves letting

rising plans5 continue to rise even though they are eligible.

But how long should they be allowed to rise beyond the

point at which they can first be started? Clearly, a rising

plan cannot (or should not) be allowed to rise beyond any of

the following points:

1. The time at which it no longer meets its constraints

2. The time beyond which it would extend past dawn

3. The time at which the Plan's centroid gets within half of

its time-span of the meridian. If started at this point, the

images will be acquired as close to the meridian (on

either side) as practical.

But there are other less obvious considerations. Suppose one

or more additional plans become eligible in the future? It is

possible that one of these newly eligible plans would be

selected by the Efficiency function in preference to the

delayed rising plan. If the selected plan’s first observation
exceeds the allowable times 1-3 above, the delayed rising

plan will fall out of constraints before this new plan’s first

observation completes. The delayed rising plan will never

be started.

It should be clear that the more heavily loaded the

scheduler is, the more likely the above scenario will arise.

Thus, in general, delaying a rising plan’s start while it rises

reduces its chance of being run. The longer it is delayed, and

thus the closer it gets to one of the limits 1-3 above, the

more likely it will not be run, or run past the meridian.

On the other hand, if this policy is applied evenly,
where all rising plans are delayed per the same policy, the

effect will be to shift the start times of all such plans toward

the future, improving their observing conditions.

Furthermore, at the start of the run there will be both rising
and setting plans. By delaying the rising plans, the

dispatcher will start with the setting plans, which is

desirable since they generally have shorter eligible lifetimes.

Finally, as the schedule becomes more loaded, there
will more likely be eligible plans in a more favorable

position, and these will be selected by the efficiency

function (see below) anyway. By allowing the less well

positioned plans to rise, the effect is the same as simply

keeping them eligible and letting the scheduler pick the

most favorable. So as the schedule becomes more heavily

loaded, the less will be the effect of delaying rising plans.

This was proven in the simulations.

The decision to delay a rising plan must take into
account the shortest of limits 1-3 above, and the potential

benefit of allowing it to rise further. Furthermore, the

amount of time to defer the rising plan (once it has been

decided to defer it in the first place) should be shorter than

the threshold of the time-left used to make the deferral

decision. This allows for some tolerance in time estimates.
Algorithm complexity could quickly reach a point of

diminishing returns while impacting scheduler performance.

5
 The “coordinates” of an entire plan are given by its centroid as defined in

section 8.2 below.

Therefore, it was decided to implement a simple
algorithm for rising plan delay: If the plan’s centroid is

rising, and if there is more than 10% of its time span

remaining in the shortest of limits 1-3 above, defer the plan.

If neither of the "hard" limits (1 or 2) will be reached, this

means the Plan will be started when its centroid comes
wiothin half of its time-span of the meridian, plus another

10% lead time.

Figure 3. Meridian position with rising plan delay

Figure 3 shows the behavior for the same set of requests

as Figure 2, but with the rising plan delay algorithm

included. The beneficial effects are clear. Note particularly

that more images were acquired because the westernmost

plans were immediately started while the more eastern ones

were deferred for rising plan delay6. Extensive simulations

of this algorithm have shown that delaying rising plans is

surprisingly effective when loading is light, and has an

unexpectedly low impact on efficiency and total number of

targets acquired when loading is heavy.

8 Efficiency Function

After application of constraints and rising plan delays, each

remaining eligible plans is tested by computing the

efficiency index. The eligible plan with the highest

efficiency index is the one chosen to start now. The purpose

of the efficiency index calculation is to decide which plan to

start considering both the scientific priority and the best use
of the current observing conditions. This is done using an

Efficiency function of the form:

   nEn kkk 


8

1
Ε

where n indexes the plan under consideration, and k indexes

the eight efficiency terms described below.

This generic form is taken from Steele and Carter1.
However, the specific terms of this function, both the

semantics of some the efficiency terms Ei(n), as well as their

coefficient values ßi, differ in from Steele and Carter. In

6
 This was confirmed by inspecting the coverage charts; the run in Figure 2

failed to get the westernmost targets.

addition, new efficiency terms were added after experience

gave rise to their need.

The knowledge gained via the simulations and user
feedback provided insight into the behavior of a dispatch

scheduler, and led to two sets of standard terms and ßi

coefficients (weights) suitable for most observing tasks.

These are described following the descriptions of the

individual terms, in section blah.

The scheduler also has a mode in which the user can
adjust the weights, giving complete flexibility. There is no

plug-in interface for adding efficiency terms; but individual

terms may be disabled by setting their weight to zero. By

varying the weights, the behavior of the scheduler can be

adjusted to meet virtually any need, or to conduct
engineering studies using the simulators.

After research, the details of which are beyond the

scope of this paper, the following efficiency terms/functions

were chosen for the scheduler:

8.1 Scientific Priority

The scheduler allows each User to assign their own

scientific priorities to their plans rather than forcing

everyone onto a single priority system. In order to assure

that allocation of the observatory is fair, each User’s

priorities are transformed into a normalized system where

the mean value of their priorities is 0.5:

5.01 
 

N

p
N

i i

where N is the total number of plans in the system for that

User. The normalized priority for each plan p is stored in the

scheduler’s database and used in the Efficiency function

calculation as shown below.

It is planned for the future to study whether the priority

of a plan should be scaled according to its number of linked

observations. This would assign a weight proportional to the

resources that the plan uses. A further refinement might be
to weight according to the observatory time needed for the

plan.

In any case, the candidate plan’s normalized priority p

is used to calculate the E1 term of the Efficiency function,
thus

)()(1 npnE 

A front panel control “Ignore Priority” is provided so
that the scheduler user can toggle between ß1=0 and the

standard ß1 value. This is useful in special situations where

the user wants to eliminate preference based on scientific

priority. It is ignored if the scheduler’s efficiency mode is

set to Custom. The control is ignored if the scheduler’s

efficiency mode is set to Custom.

8.2 Nearness to Transit Altitude

It is intuitively obvious that it is advantageous to

observe some objects at as low an air mass as possible. The

simple interpretation of this would imply an E function of

the form

 



90

)(
2

nA
nE C

where AC(n) is the current altitude of the first observation of

the candidate plan n. However, this would unfairly favor

objects whose declination is near the latitude of the

observatory (as observed by Steele and Carter1). A better

criterion is the distance of the object from its transit altitude.

This implies an E function of the form

 
)(

)(
2

nA

nA
nE

T

C

where AC(n) and AT(n) are the current and transit altitudes of
the first observation of plan n.

But there is an additional consideration that is non-

intuitive but became obvious after early simulations: If the

candidate plan contains multiple linked observations of
different targets, it would be incorrect to use the current

altitude of the first (or any other) of the plan’s observations

in the above test.

Instead, the scheduler uses the centroid of all of the
plan’s linked observation equatorial coordinates as the

“coordinates” of the plan as a whole. The centroid

coordinates are then converted to altitude using the local

sidereal time (LST) projected forward from the current LST

by half of the plan’s calculated time span, yielding a

centroidal altitude Ā for the plan as a whole. Thus,

 
)(

)(
2

n

n
nE

T

C

A

A


where ĀC(n) and ĀT(n) are the current and transit centroid

altitudes of plan n.

Simulations revealed that the centroid method is an
excellent way to treat a plan with multiple linked

observations at possibly different coordinates. It turns out

that the plan is most often started at an efficient time, and

the individual observations are done as closely as practical

to their transit altitude, on average.

In section 8.7 below, an experimental alternative to
Transit Altitude (called Highest Altitude) is discussed. If its

weight E7 is greater than zero, then E1 must be set to zero as

these two terms are mutually exclusive.

8.3 Slewing Overhead

It is more efficient to observe nearby targets when

possible, so a slewing overhead term is included in the

Efficiency function. Considering only the time needed to

slew to the target unfairly penalizes observations that take a

comparatively long time to complete. For example, if a

candidate observation is expected to take an hour to

complete, a thirty-second slew is not significant. If the

observation consists of a single ten-second exposure, the

thirty-second slew has a significant impact on efficiency.

Thus, slewing overhead is represented by an E function of

the form

)(
)(3

OS

O

tt

t
nE




where tO is the estimated time needed to complete data

acquisition for the observation, and tS is the estimated
slewing time needed to get to the target coordinates of the

first observation of the candidate plan before starting data

acquisition. The sequencer provides the scheduler with a

time-to slew estimate, given a new target’s position, and this

is tS above.

Note that this term does not consider the time needed to
slew to possible subsequent linked observations in the

candidate plan. There is no way to know the starting point

for such slews, as the scheduler is intrinsically dynamic.

A front panel control “Prefer Short Slews” is provided
so that the scheduler user can toggle between ß3=0 and the

standard ß3 value. The control is ignored if the scheduler’s

efficiency mode is set to Custom.

8.4 Retry Count

The scheduling rules state that a plan must either

complete successfully within a night, or fail completely. In

cases where a plan fails due to changes in sky condition,

weather shutdowns, or (rare) scheduling errors that cause an

observation’s specified time window to be missed, the
scheduler re-queues the plan, making it eligible to be started

again. This could be in the same night (if constraints can

still be met) or it may cause it to be delayed until a

succeeding night.

In order to provide some level of preference to failed
and re-queued plans, the scheduler keeps a count of the

number of times a plan has been re-queued due to failure.

This retry counter is used to provide a boost in preference in

the Efficiency function. This term is represented simply as

 3)(4  RRnE

where R is the retry count (= 0 if the plan is being started for

the first time). Furthermore, R is limited to 3, preventing a

repeatedly failing plan from being unfairly weighted.

The intention is to have the ß4 -weighting coefficient set
to a low value, providing only a mild boost in priority for

re-tried plans. Setting this to a high value could cause a

failed plan to become stuck in a failure loop. Further study

is planned to look for instabilities that might be caused by

this term in the Efficiency function.

A front panel control “Prefer Failed plans” is provided
so that the scheduler user can toggle between ß4=0 and the

standard ß4 value. The control is ignored if the scheduler’s

efficiency mode is set to Custom.

8.5 Meridian Crossing

When the telescope is on a German equatorial mount, a

high cost is associated with every crossing of the celestial

meridian. The mount must “flip”, which can take

considerable time. Besides the actual flip time, additional

time may be needed to assure precise pointing to the sky

after the flip due to non-orthogonality between the right

ascension and declination mechanical axes.

Thus, meridian crossings have a significant impact on
efficiency. The scheduler includes a meridian crossing

“penalty” term in the Efficiency function, as

MnE 1)(5

where M is 1 if a meridian crossing is required to reach the

observation’s target coordinates, and 0 if no meridian

crossing is required.

For non-German mounts, the ß5 weighting coefficient is
set to 0, effectively eliminating this term from the

Efficiency function.

A front panel control “Avoid GEM Flip” is provided so
that the scheduler user can toggle between ß5=0 and the

standard ß5 value. The control is ignored if the scheduler’s

efficiency mode is set to Custom.

8.6 Lateness

Early in the development and testing of the scheduler, it

became apparent that, with a moderate to full load, targets

which are setting in the west during the evening might be

left behind as the scheduler concentrates around the

meridian. Since a given target sets even earlier on

subsequent nights, the problem worsens until the target
becomes completely unreachable for many months.

The Rising Plan Delay algorithm can help this

somewhat as previously described. Nonetheless, it was
determined that a “lateness” term was needed for

applications where westernmost targets are more important

then those at the meridian. The scheduler has a mode

selector that allows the user to select “Prefer Meridian”

versus “Prefer West”. The selector enables either the Transit

Altitude or Lateness terms, respectively. The two terms are

never used together in the standard modes of scheduler

operation.

Ideally, when calculating a lateness term, the time
remaining before the (currently eligible) plan again becomes

ineligible for any reason should be used. Thus

    

    00

6/1

66

6





nEnEfor

ntnE rem

where Δtrem(n) is the time (hours) until the candidate plan

would become ineligible due to falling out of constraints or

falling below the observing horizon.

8.7 Highest Altitude

Field experience and simulation revealed a limitation in the

Transit Altitude term. Some rising targets will never reach

their transit altitude before dawn. This led to an

experimental alternative to the Transit Altitude term.

This new term uses the highest altitude reached by a
rising plan’s centroid during the current observing night.

For targets which have already transited at dusk, the transit

altitude is still used, avoiding interaction with the Lateness

term described in section 8.6. For targets that do reach

transit altitude during the night, its effect is identical to

Transit Altitude. However for eastern targets which rise late

and don’t transit, the Highest Altitude term will give the
same boost level for those targets’ highest altitude as does

Transit Altitude for setting targets and targets that do transit

during the night.

The term is calculated using the candidate plan’s
centroid, as in Transit Altitude, but instead, for rising targets

only, using the highest altitude reached by the target before

dawn. Thus

  
)(

)(
7

n

n
nE

H

C

A

A
 (rising)

  
)(

)(
7

n

n
nE

T

C

A

A
 (other)

Where AH(n) is the highest altitude reached by the nth
plan’s centroid before dawn, for a rising target, and AT(n) is

the transit altitude as before. If E7 is set to a non-zero value,

then E1 must be set to zero, and vice versa.

The effect of this term is still under investigation. Early
results are encouraging, and if eastern targets’ efficiency is

improved without significant effect on transiting targets, it

will be adopted in place of Transit Altitude. At present, the

scheduler supports both terms, and E7 may be activated in

place of E1 by adjusting the weights in custom efficiency

mode.

8.8 Observing Conditions

One of the scheduler’s standard constraints is sky condition.

Application of this constraint prevents a plan from getting

started if sky conditions are poorer than required. However,

if sky conditions are better than required, efficiency dictates
that the better conditions should not be wasted. If there is a

lower priority plan whose first observation requires the

better conditions, it should perhaps be run in preference.

The simplest scheme would be to require that
observations be made only at their required conditions. This

is not efficient, though, as it would prevent usage in better

conditions than needed even when there is nothing else to

do. Instead, we use a term suggested by Steele and Carter.

In the scheduler, sky condition can be one of four
values, excellent, good, fair and poor. We assign numeric

values of 3, 2, 1, and 0 to these conditions, respectively.

Then we calculate the E term as

1)(

1
)(6




AR CC
nE

where CR is the required condition number and CA is the

actual condition number.

8.9 Standard Efficiency Modes

It should be clear that end users will be bewildered by the

effects of adjusting efficiency weights and the resulting

changes in behavior of the scheduler. Therefore, the

scheduler was designed with user controls allowing two

standard modes of operation, plus a third mode in which the
efficiency weights are user-adjustable:

1. Prefer Meridian

2. Prefer West

3. Custom

In addition, as previously described, the Priority, Slew

Distance, Meridian Crossing, and Retry Count terms may be

enabled or disabled via user controls. When enabled, and

when the scheduler is running in mode (1) or (2) above,

standard weights are used. When disabled, the

corresponding weight is set to zero, eliminating the term

from the efficiency calculation. To summarize, these

additional user controls are:

1. Prefer Short Slews (slewing overhead)

2. Avoid GEM Flip (meridian crossing)

3. Prefer Failed plans (retry count)

4. Ignore Priority (priority)

Note that the Ignore Priority control is provided for

engineering purposes; ordinarily the user would never

suppress the effect of scientific priority. Table 3 shows the

efficiency weights for the two standard scheduling modes:

Table 3. Standard Efficiency Weights

Term Prefer Meridian Prefer West

Priority 1.0 1.0

Transit Altitude 0.7 0.0

Slewing Overhead 0.4 0.4

Retry Count 0.5 0.5

Meridian Crossing 0.5 0.5

Lateness 0.0 0.7

Highest Altitude
*
 0.0 0.0

Observing Conditions 0.4 0.4

* Experimental, available only in Custom mode.

9 TO Interrupt Facility

Another issue that appeared during usage of the first version

of the scheduler was the need for some sort of “target of

opportunity” (TO) interrupt. The dispatch scheduler is well-

suited to this requirement. The obvious use case is Gamma

Ray Burst (GRB) follow up. The transient nature of GRBs

is such that follow up observations must begin within a few

minutes of a detection by one of the satellites such as Swift7.

Images being acquired during scheduler operation may
span many minutes. Thus, it was determined that the

7
 See http://swift.gsfc.nasa.gov/docs/swift/swiftsc.html

scheduler must have a way to immediately halt data

acquisition by the sequencer and optionally stop any

running plans (those which have uncompleted linked

observations). The latter is needed in order to make way for

newly added urgent observing requests for GRB follow up.

The fact that the scheduler can accept new observing
requests while running makes this sort of thing possible.

To make this facility most general, it was decided to

provide an externally accessible application programming

interface (API) for monitoring tools. This API not only
provides the interrupt signaling capability, but also a set of

functions that monitoring tools can use to determine the

observability of a potential TO. Uses of this facility will be

the subject of a future paper.

10 Simulation Design Issues

The initial development of the scheduler used simulations

throughout. In the early design phase, narrow-focus
simulations were used to evaluate various candidate terms in

the Efficiency function. These simulations are beyond the

scope of this paper. They served primarily to assist in the

selection of terms in the Efficiency function.

Once the framework was integrated into a working
scheduler, a second phase of simulations was undertaken to

investigate its behavior, look for anomalies, and get some

feel for its performance under various conditions. In

particular, the effects on behavior due to variations in the ßi

weighting coefficients were studied.

After the initial release of the scheduler to commercial
users, their feedback was used to drive further refinement of

the design and implementation. This ongoing user-driven

dev elopement yielded, among many other things, the

Rising Plan Delay algorithm described in Section 7. It

should be noted that, in contrast to most other observatory

schedulers, the present scheduler was designed to withstand

the rigors of widespread usage by non-technical

astronomer/users and the wide variations in requirements of
these users.

The May 2006 revision (3) to this paper occurred

simultaneous with a review of the scheduler, following 2

years of deployment in the field at over a dozen sites. Part of
this review included a new round of simulations following

design changes. The primary purpose of these simulations

was to support regression testing (assurance that changes

did not impair performance and/or reliability). It was found

that the design changes during the review (including the

addition of the Rising Plan Delay feature) were in fact

improvements in most cases, and that there were no

regressions.

The January 2018 revision (4) of this paper adds a new
feature, Plan Completion, to the dispatch decision process.

To support development and testing, the simulator was

enhanced to allow generation of realistic requests whose

structure accurately reflects the typical use by astro-imagers.

A new simulation section was added for this special

application and the new Plan Completion feature.

These simulations will be described along with a few
illustrative results.

Table 4. Load Generator Mission Types

Mission type Fraction

of total

load*

Description

Random single

image

0.6 Single exposure,

random interval 240
sec mean, 60 sec.
std. dev. Random
priority mean of 5,
std. dev. of 2.

LRGB

Astrophotography

0.2 Per-target Projects,
each with multiple
Plans of 30 minutes
length, with varying

exposures in each of
5 filters (LRGBHa)
exposure of 300-
600 sec. Scientific
priority of 3.

Asteroid/Comet

search and follow-

up

0.2 4 observations, each

image 180 sec.
integration, spaced
45 min apart with a
+/- 10 min
tolerance. Scientific
priority of 5.

* with all workload types turned on.

10.1 Input to Simulations

In order to provide real-world conditions for

simulations, a built-in facility is provided for generating a

Projects consisting of multiple plans of various kinds. The

generator is capable of creating plans that are representative

of the astronomy missions shown in Table 4. When

generating a test workload, it is possible to selectively

include or exclude each of these mission types.

The fraction of the total workload represented by each
mission type is variable. In Table 4, the “fraction of total

load” values given are those that result if all of the mission

types are selected. If one or more mission types are

disabled, the relative mix changes based on the relative

frequency of the remaining mission types. Some simulations

used a sub-set of the remaining plan types, and this will be

clearly indicated in the description of the simulation.

Target/observation locations are generated randomly

above 35 degrees elevation over the “dark sky” for the

entire night on the date and geodetic location set in the

scheduler. For plans with linked observations of different
targets, it is possible for targets to be unreachable due to the

timing. This is a real world.

Finally, the workload for the night can be set to one of

the following levels:

1. Lightly booked (20% of the night)

2. Fully booked (70% of the night)

3. Over-booked (150% of the night)

The percentages refer to the amount of time that all of the

scheduled observations are estimated to require, not just

shutter-open time. The overhead times are taken into

consideration.

10.2 Multi-Night Simulations

In order to support long-term studies (such as the effect of

Plan Completion), the simulator can be set to run

continuously night after night. At the end of each simulated

night, the engine log and run detail logs are rotated and

closed, then the time jumps to the next night's opening time.

This process will continue until the dispatcher is manually

stopped.

When doing multi-night simulations, the workload
levels described in the previous section don't have the same

meaning. The workload is multiplied by a "number of

nights" input, so in reality the first night will be much more

heavily loaded, etc.

10.3 Simulated Sequencer

In order to create as realistic an environment as possible, a

simulated sequencer was built and attached to the
scheduler’s’ sequencer interface. The simulated sequencer

looks at the dispatched observation and its image-sets, and

simply creates a time delay equal to that which a real

observatory would require to complete the observation. The

following common process items are given separate time

estimates. The actual values of the timing parameters are

shown in Table 5 below.

1. Slewing time (based on rates and settling time, runs

start with telescope at parked position 0 HA, 0 Dec)

2. Guider startup time (for “long” images only)

3. Filter switching time (assumes focus offsets

supported)
4. Imager download time (varies by binning)

5. Post processing time (plate solving, calibration,

stacking)

The sequencer simulator can be configured to add a

random variation to the timing values. This is used to test

the robustness of the dispatcher in the face of inaccurate

time estimates. In addition, the sequencer simulator can be

configured to fail observations randomly. Failure of any of

the images in an observation will cause the observation (and

the plan) to fail, so the more images are in a plan, the more

likely it is to fail, all else being equal.

Table 5. Sequencer Simulator Timings

Slew rate 3.5 degrees/second

Slew settling 10 seconds

Guider startup 30 seconds

Minimum unguided

exposure interval

120 seconds

Imager download 20 seconds

Filter switching 20 seconds

German flip 90 seconds

Auto-focus 60 seconds

Image post-processing 5 seconds

Timing Noise (uniform

distribution)

5% of interval*

* Disabled for some simulations.

10.4 Time Simulation

It is clearly required that simulated time be accelerated

for scheduler simulations. Since scheduling itself is a CPU

and disk/database bound activity, it is not clear how to treat

scheduling time as part of the overall observatory efficiency.
The solution is to accelerate the clock only during the time

the sequencer simulates acquiring the data for the

dispatched observation and image-sets and when the

scheduler is sleeping (no work to do). The clock runs at real

time during the scheduling phase. This most accurately

reflects the effect of scheduling time on overall efficiency.

All sources of time, including time stamps in the log file,

come from the 2-mode clock.

11 Simulations and Results

This section presents the results of some of the simulations,

showing the effects of varying the ßi -weighting coefficients

on timing and hour angle at acquisition. Two data sets were

generated: one consisting of random targets of one exposure

each, with random exposure intervals and random priorities,

and the other consisting of a mixture of the random targets

and sets of random targets of four time-spaced linked

observations of each with fixed exposure intervals and

priorities. See Table 4 for specifics.

The number of targets was chosen for a moderate

(70%) load and an overloaded (150%) level. The test loads

were generated by using the timing information in Table 5, a

latitude of 33N, longitude of 111W, a starting time at
astronomical twilight on March 25, 2006 (UTC), and

generating random targets computing the total time needed

to acquire each image of that target, and adding that to a

running total. Since slewing time is not known (it is order-

dependent) a guess of 45 degrees is used. When the running

total reached 70% of the total night-time from astronomical

twilight to astronomical twilight, generation was stopped.

For example, since the random targets also had randomly

varying exposure intervals, sometimes the guider would be

needed (incurring additional guider startup time).

Each of these target sets were simulated over a night
three times, with each of just three of the terms in the

Efficiency equation set for ßI = 1.0 and the rest set to 0.0

(disabling them). The three terms studied were Priority,

Transit Altitude, and Slew Time.

11.1 Random Single Images – Moderate (70%) Load

The first set of simulations uses a Project consisting of 69

plans, 1 observation and 1 image-set in each with no
constraints apart from being above the observing horizon of

25 degrees. Figure 4 shows the distribution of targets in

equatorial coordinates.

Figure 4. Targets for single image moderate load test

Priorities are random with normal distribution, mean of 5.0,

and standard deviation of 2.0. Exposure intervals are

random with normal distribution, 240 second mean,

standard deviation of 60 seconds.

11.1.1 Priority Only (moderate load)

The first simulation with the random-images data set was

run with only the Priority term in the Efficiency equation.

This caused the dispatcher to always pick the eligible plan

that has the highest scientific priority. Figure 5 below shows

the resulting distribution of acquisition locations relative to

the meridian.

Figure 5. Target sequence for 100% priority (moderate)

For this test, 66 of the 69 available plans were completed.

Analysis of the log file of the run confirmed that the plans

that were not run were those with the lowest scientific

Coverage Chart for RunDetail.txt (69 targets)

-20

-10

0

10

20

30

40

50

60

70

80

D
e
c

Coverage Chart for RunDetail.txt (66 targets)

-20

-10

0

10

20

30

40

50

60

70

80

D
e
c

Observed

Skipped

Never Eligible

priority. Because, in this scenario, the targets were picked

without regard to position and slewing time, the excessive

motion (clearly visible in Figure 5 and Figure 6) adversely

affected the efficiency of the dispatcher.

Figure 6. Meridian chart for 100% priority (moderate)

11.1.2 Transit Altitude Only (moderate load)

Next, the same random-images data set was re-run, this time

with only the Transit Altitude term in the Efficiency

equation. This caused the dispatcher to always pick the

eligible target that is closest to its transit altitude. The

results of this test are shown in Figure 7 and Figure 8 below.

Predictably, most motion was in declination and the

deviation from the meridian was far less. As the scheduler

ran out of plans to choose from, it started picking the

remaining targets which were all to the east of the meridian,
so the trend is to the east (positive hour angle).

In this case, 65 of the 69 available plans were

completed. Analysis of the log file revealed that those that

were missed were early evening targets (lowest right
ascension) whose meridian passage had already occurred.

At the beginning of the night, there are plenty of targets

approaching their meridian passage, and these are of course

given preference in this scenario (transit-altitude-only). By

the time the dispatcher got low on eligible targets, those

early targets had dropped below the 25-degree altitude limit

in the west.

Figure 7. Target sequence for 100% transit alt. (moderate)

Figure 8. Meridian chart for 100% transit alt. (moderate)

11.1.3 Lateness Only

Next, the effect of the (revised) Lateness term was
investigated at moderate load. This resulted in the dispatcher

trying to choose the most westward targets, as shown in

Figure 9 and Figure 10 below. Again, however, when the

dispatcher ran out of targets, it started picking the ones to

the east as they rose and came into constraints. In this test,

all 69 possible plans were successfully completed, since the

dispatcher started with those that were about to set, rather

than starting near the meridian while some westward targets

set and became inaccessible, as in the previous test.

Figure 9. Target sequence for 100% Lateness (moderate)

Figure 10. Meridian chart for 100% Lateness (moderate)

11.1.4 Slewing Distance Only (moderate load)

The random-images data set was run again with only the

Slew-Overhead term in the Efficiency function. This caused

the dispatcher to always pick the plan whose target is closest

to the previous one. The results of this test are shown in

Figure 11 and Figure 12 below. Minimizing slew time

allowed the all 69 plans to complete, and as both charts

show, the dispatcher usually selects the closest target from

the previous one, wandering across the sky to achieve this

goal. Slewing distances become large towards the end of the
run as it does the final few targets.

Meridian (HA*Cos(Dec)) for RunDetail.txt (66 targets)

-5

-4

-3

-2

-1

0

1

2

3

4

5

H
A

 C
o

s
(D

e
c
)

Coverage Chart for RunDetail.txt (65 targets)

-20

-10

0

10

20

30

40

50

60

70

80

D
e
c

Observed

Skipped

Never Eligible

Meridian (HA*Cos(Dec)) for RunDetail.txt (65 targets)

-5

-4

-3

-2

-1

0

1

2

3

4

5

H
A

 C
o

s
(D

e
c
)

Meridian (HA*Cos(Dec)) for RunDetail.txt (69 targets)

-5

-4

-3

-2

-1

0

1

2

3

4

5

H
A

 C
o

s
(D

e
c
)

Figure 11. Target sequence for 100% slew dist. (moderate)

Figure 12. Meridian chart for 100% slew dist. (moderate)

11.2 Random Single Images – Overload (200%)

The effects of the priority and slewing distance terms in the
Efficiency function do not change with loading. Therefore

the over-loaded tests are presented only for the second and

third cases above (Transit Altitude and Lateness only).

In this series, the number of requested targets was
increased to 200% of the estimated maximum targets that

could be acquired (again given the same observing overhead

times as well as imaging times as in the previous tests). This

resulted in 188 total target requests. The individual targets

were generated using the same random priorities and

exposure intervals as already described (though priority was

ignored in these tests for clarity, as already explained).

11.2.1 Transit Altitude Only (over-loaded)

The target sequence chart in Figure 13 shows the sky

distribution of the targets used in the 200% over-loaded

tests, as well as the targets actually acquired when using

only the transit altitude term in the Efficiency function. As

expected, both early and late targets were skipped, in

preference for those that happened to be nearest to the

meridian at each dispatch cycle. This resulted in targets that

were neither early nor late also being skipped, simply

because there were too many to acquire.

The meridian chart in Figure 14 clearly shows the effect
of the transit altitude term of the Efficiency function when

the scheduler has more work requested than it can do. At all

times there are many plans eligible, thus the Efficiency

function directs the scheduler to choose the plan nearest to

the meridian as its next best. Only 93 plans were
successfully completed, however.

Figure 13. Target sequence for 100% transit alt. (overload)

Figure 14. Meridian chart for 100% transit alt. (overload)

11.2.2 Lateness Only (over-loaded)

With only the Lateness term in the Efficiency function, the

target sequence chart in Figure 15 shows a total preference

for the earliest targets. In this case, more plans were run

(106 versus 93), presumably because no early targets are

lost, and the telescope stays to the west as much as possible.

Figure 15. Target sequence for 100% lateness (overloaded)

Coverage Chart for RunDetail.txt (69 targets)

-20

-10

0

10

20

30

40

50

60

70

80

D
e
c

Observed

Skipped

Never Eligible

Meridian (HA*Cos(Dec)) for RunDetail.txt (69 targets)

-5

-4

-3

-2

-1

0

1

2

3

4

5

H
A

 C
o

s
(D

e
c
)

Coverage Chart for RunDetail.txt (93 targets)

-20

0

20

40

60

80

D
e
c

Observed

Skipped

Never Eligible

Meridian (HA*Cos(Dec)) for RunDetail.txt (93 targets)

-5

-4

-3

-2

-1

0

1

2

3

4

5

H
A

 C
o

s
(D

e
c
)

Coverage Chart for RunDetail.txt (106 targets)

-20

0

20

40

60

80

D
e
c

Observed

Skipped

Never Eligible

Figure 16. Meridian chart for 100% Lateness (overloaded)

11.3 Effect of Rising Plan Delay

Next, the effects of Rising Plan Delay were investigated at

both moderate load (where its effects should be beneficial)

and over-load (to see if it has detrimental effects). Priority
and Slew Distance terms were disabled for clarity. The same

sets of observing requests for moderate and overload cases

were used.

11.3.1 Transit Alt. and Rising Plan Delay (moderate)

At a moderate load, the beneficial effects of Rising Plan

Delay are clear when comparing Figure 18 with Figure 8
(same case but without Rising Plan Delay). All 69 possible

plans were acquired. Most were acquired very close to the

meridian, well above their constraints. Only early and late

targets were (necessarily) acquired away from the meridian.

Figure 17. Target sequence for 100% Transit Altitude

with Rising Plan Delay (moderate)

Figure 18. Meridian chart for 100% Transit Altitude

with Rising Plan Delay (Moderate)

11.3.2 Lateness and Rising Plan Delay (moderate)

With Rising Plan Delay in effect, switching from 100%

Transit Altitude to 100% Lateness caused very little change

in the behavior of the dispatcher under moderate load.

Again, all plans were completed. The only differences

appeared at the beginning and end of the run, where the

early targets were acquired earlier (and in a more favorable

position) and some late targets were acquired in less

favorable positions.

Figure 19. Target sequence for 100% Lateness

with Rising Plan Delay (moderate)

Figure 20. Meridian chart for 100% Lateness

with Rising Plan Delay (moderate)

Meridian (HA*Cos(Dec)) for RunDetail.txt (106 targets)

-5

-4

-3

-2

-1

0

1

2

3

4

5

H
A

 C
o

s
(D

e
c
)

Coverage Chart for RunDetail.txt (69 targets)

-20

-10

0

10

20

30

40

50

60

70

80

D
e
c

Observed

Skipped

Never Eligible

Meridian (HA*Cos(Dec)) for RunDetail.txt (69 targets)

-5

-4

-3

-2

-1

0

1

2

3

4

5

H
A

 C
o

s
(D

e
c
)

Coverage Chart for RunDetail.txt (69 targets)

-20

-10

0

10

20

30

40

50

60

70

80

D
e
c

Observed

Skipped

Never Eligible

Meridian (HA*Cos(Dec)) for RunDetail.txt (69 targets)

-5

-4

-3

-2

-1

0

1

2

3

4

5

H
A

 C
o

s
(D

e
c
)

11.3.3 Transit Alt. and Rising Plan Delay (over-loaded)

Comparing Figure 22 with Figure 14 shows that the primary

effect of Rising Plan Delay on an over-loaded schedule with

Transit Altitude only is to allow more plans to be completed

(109 versus 93), a benefit. Figure 22 shows a few deviations

from the meridian through the run, but overall there seems

to be no detrimental effect.

Figure 21. Target sequence for 100% Transit Altitude

with Rising Plan Delay (over-loaded)

Figure 22. . Meridian chart for 100% Transit Altitude

with Rising Plan Delay (over-loaded)

11.3.4 Lateness and Rising Plan Delay (over-loaded)

Comparing Figure 24 with Figure 16 shows that the effect
of Rising Plan Delay on an over-loaded schedule with

Lateness only is minimal. Again, more targets are acquired

(though only a few, 108 versus 105), and there seem to be

no detrimental effects. Figure 24 shows virtually the same

target positions as Figure 16.

Figure 23. Target sequence for 100% Lateness

with Rising Plan Delay (over-loaded)

Figure 24. Meridian chart for 100% Lateness

with Rising Plan Delay (over-loaded)

11.4 Combined Single and Quadruplets

The final set of simulations to be presented consists of

combinations of plans containing random single images and

plans each containing four linked observations (one 180-

second image of each) of the same target (a simulated
asteroid follow up). The linked observations were spaced 45

min apart with a 10 min. The dispatcher was configured to

enable Rising Plan Delay and use only the Transit Altitude

term in the Efficiency function. As before, other Efficiency

terms such as priority were ignored for clarity. Again, the

goal was to assure that Rising Plan Delay does not adversely

impact the operation of the scheduler.

11.4.1 Combined Plans (moderately loaded)

The moderate load combined test consisted of 42 plans total,

with 21 being random single images as previously described

and 14 being simulated asteroid follow up plans with 4

linked observations as just described. Figure 26 shows that

Rising Plan Delay is effective in preventing eastward drift

of observing position as before. Of course there are

deviations away from the meridian for the plans with linked

observations. It is worth noting that, apart from early

evening plans, the distribution of observing position about

Coverage Chart for RunDetail.txt (109 targets)

-20

0

20

40

60

80

D
e
c

Observed

Skipped

Never Eligible

Meridian (HA*Cos(Dec)) for RunDetail.txt (109 targets)

-5

-4

-3

-2

-1

0

1

2

3

4

5

H
A

 C
o

s
(D

e
c
)

Coverage Chart for RunDetail.txt (108 targets)

-20

0

20

40

60

80

D
e
c

Observed

Skipped

Never Eligible

Meridian (HA*Cos(Dec)) for RunDetail.txt (108 targets)

-5

-4

-3

-2

-1

0

1

2

3

4

5

H
A

 C
o

s
(D

e
c
)

the meridian is roughly symmetrical. This was not the case

before the introduction of Rising Plan Delay.

Figure 25. Target sequence for combined plans (moderate)

Figure 26. Meridian chart for combined plans (moderate)

12 Conclusions

The simulations results show that a dispatch scheduler is a

practical (and in some ways, superior) alternative to queue-

based optimizing schedulers. It has the following

advantages:

1. Responds to changes in observing conditions and

dispatches requests that can be done in the current (or

worse) conditions while trying to do the ones that must

be done in the current (or better) conditions.

2. May be interrupted by bad weather, and will resume by

dispatching the best observations instead of merely
delaying uncompleted ones (which will be west of their

originally planned places).

3. Accepts new observing requests during the run and

makes them immediately available.

4. Allows modification of unstarted requests at any time.

5. Will retry failed observations automatically.

It should be noted, however, that a dispatch scheduler is not

applicable in all situations. At one end of the spectrum is a

plan with many short exposures, such as used by a

supernova search program. In this case, observing efficiency

is paramount. The additional dispatch time between (very

short) plans, and the randomness of the traversal sequence

between targets, may significantly impact the total number

of images that can be acquired in a run. For example, 3

additional seconds of dispatch time over 600 images reduces
observing time by a half hour. At the other end of the

spectrum is the astro-photography application in which a

single target is imaged for long periods of time, up to the

entire night. In this case, dynamic scheduling is probably

unnecessary.

12.1 Rising Plan Delay

The behavior of the revised dispatcher with Rising Plan

Delay conditions exceeded expectations. It seems clear from

the evidence presented that Rising Plan Delay solves the

“eastward drift” problem by improving the observing

positions for light and moderate schedule booking levels,

while having no adverse effects on scheduler behavior under
over-booked conditions. More tests are needed, however, to

validate “edge conditions” and to check for stability

problems when recycling plans that have failed. For now,

plans are not automatically recycled. Revision Status

The May 2006 paper is a general revision to the paper
of the same title originally submitted for review and

publication to the Society for Astronomical Sciences on

March 30, 2004, and covers more detail as well as final

design aspects at the time of commercial release (including

the addition of the Rising Plan Delay feature).

The November 2014 revision (3) just corrected a few
grammatical and typographic errors.

The January 2018 revision (4) includes information on
the new Project Completion weighting factor for dispatch

decisions. Also included is a description of the changes and

additions to the test plan generator in support of simulating

realistic workloads for astro-imaging and multi-night

simulation.

The September 2018 revision (5) of this paper
(September 2018) makes some small changes in the Rising

Plan Delay algorithm, to prevent excessive imaging past

(west of) the meridian.

13 Acknowledgements:

My heartfelt thanks go to Dr. Frederick Hessman of the

University of Göttingen, Germany. Once he understood that

I was looking at dispatch scheduling, he pointed me to the

Steele and Carter paper [1]. In addition, he suggested the

open-ended constraint design, including the idea of plug-in

modules for constraints. This turned out to be an excellent

suggestion.

In addition, John Farrell, formerly of Los Alamos
National Laboratory and currently a director of the Las

Cumbres Observatories, provided countless hours of testing

simulations, and analysis. His analysis provided the impetus

for the addition of the “lateness” term in the efficiency

function, as well as providing insight for setting the standard

Coverage Chart for RunDetail.txt (79 targets)

-10

0

10

20

30

40

50

60

70

80

D
e
c

Observed

Skipped

Never Eligible

Meridian (HA*Cos(Dec)) for RunDetail.txt (79 targets)

-5

-4

-3

-2

-1

0

1

2

3

4

5

H
A

 C
o

s
(D

e
c
)

efficiency weights. More recently, he indicated the strong

need for a change which resulted in the rising plan delay

algorithm, as well as the “highest altitude” alternative to

transit altitude in the efficiency function. My thanks go to

him as well.

Finally, many of the changes and additions to the
scheduler in its new version are due to the feedback of the

scheduler users. In particular, the team of observers using

the Sonoita Research Observatory (Walt Cooney, John

Gross, Arne Henden, Dirk Terrell), as well as Steve Brady
(a prolific CV observer), were the source of excellent

feedback and suggestions. I truly appreciate their patience

and enthusiasm.

References:

1. Steele I.A., Carter, D., 1997, Control Software and

Scheduling of the Liverpool Robotic Telescope in

Telescope Control Systems II, Proc. SPIE, 3112, ed., H.
Lewis, 222.

2. Puxley P., Boroson T., 1997, Observing with a 21st

Century Ground-Based Telescope in Optical

Telescopes of Today and Tomorrow, Proc. SPIE, 2871,

ed. Arne L. Ardeberg, 744

Contact Information

Robert B. Denny

DC-3 Dreams, SP

6665 E. Vanguard St.

Mesa, AZ 85215-7737 USA

+1 480 396 9700

rdenny@dc3.com

